Advertisement

Towards the Development of a Robotic System for Beating Heart Surgery

  • Özkan Bebek
  • M. Cenk Çavuşoğlu
Chapter

Abstract

The use of intelligent robotic tools promises an alternative and superior way of performing off-pump coronary artery bypass graft (CABG) surgery. In the robotic-assisted surgical paradigm proposed, the conventional surgical tools are replaced with robotic instruments, which are under direct control of the surgeon through teleoperation. The robotic tools actively cancel the relative motion between the surgical instruments and the point-of-interest on the beating heart, in contrast to traditional off-pump CABG where the heart is passively constrained to dampen the beating motion. As a result, the surgeon operates on the heart as if it were stationary. We call the proposed algorithm “Active Relative Motion Cancelling” (ARMC) to emphasize the active cancellation. This chapter will provide a review of our research towards developing robotic tools for off-pump CABG surgery. First, we will explain the algorithm we have developed to achieve effective motion cancellation. Second, we will explain the necessary sensory system for the beating heart surgery and the developed whisker sensors to detect three-dimensional heart motion. Third, we will explain the millirobotic gripper developed for minimal invasive surgery. Finally, we will outlay the overall system design for robotic-assisted beating heart surgery.

Keywords

Minimally Invasive Surgery Adaptive Filter Prediction Horizon Heart Motion Shape Memory Alloy Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Dr. Mark Ratcliffe for his help during collection of the heart data; Dr. Hung-I Kuo and Engin Pehlivanoğlu for their help during the bonding of the strain gauges to the whisker sensor flexure beams.

This work was supported in part by National Science Foundation under grants CISE IIS-0222743, EIA-0329811, and CNS-0423253, US DoC under grant TOP-39-60-04003, and Case Western Reserve University with a Support of Undergraduate Research and Creative Endeavors (SOURCE) award.

References

  1. 1.
    Deaths: Preliminary data for 2004 (2006). URL http://www.cdc.gov/nchs/fastats/heart.htm
  2. 2.
    American Heart Association (2007). URL http://www.americanheart.org
  3. 3.
    Anderson, B.D., Moore, J.B.: Optimal Control Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, NJ (1990)MATHGoogle Scholar
  4. 4.
    Bahoura, M., Hassani, M., Hubin, M.: DSP implementation of wavelet transform for real wave forms detection and heart rate analysis. Comput. Methods Programs Biomed. 52, 35–44 (1997)CrossRefGoogle Scholar
  5. 5.
    Özkan Bebek: Robotic-assisted beating heart surgery. Ph.D. Dissertation, Case Western Reserve University, Cleveland, OH, USA (2008). URL http://rave.ohiolink.edu/etdc/view?acc_num=case1201289393
  6. 6.
    Bebek, O., Cavusoglu, M.C.: Intelligent control algorithms for robotic assisted beating heart surgery. IEEE Trans. Robot. 23(3), 468–480 (2007)CrossRefGoogle Scholar
  7. 7.
    Bebek, O., Cavusoglu, M.C.: Whisker-like position sensor for measuring physiological motion. IEEE/ASME Trans. Mech. 13(5), 538–547 (2008)CrossRefGoogle Scholar
  8. 8.
    Berkelman, P.J., Whitcomb, L.L., Taylor, R.H., Jensen, P.: A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation. IEEE Trans. Robot. Automat. 19(5), 917–922 (2003)CrossRefGoogle Scholar
  9. 9.
    Berne, R.M., Levy, M.N.: Principles of Physiology, 3rd edn. Mosby Inc, St. Louis (2000)Google Scholar
  10. 10.
    Berne, R.M., Levy, M.N.: Cardiovascular Physiology, 8th edn. Mosby Inc, St. Louis (2001)Google Scholar
  11. 11.
    Camacho, E., Bordons, C.: Model Predictive Control. Springer, Berlin (1999)Google Scholar
  12. 12.
    Cavusoglu, M.C., Feygin, D., Tendik, F.: A critical study of the mechanical and electrical properties of the PHANToM haptic interface and improvement for high performance control. Presence 11(6), 555–568 (2002)CrossRefGoogle Scholar
  13. 13.
    Cavusoglu, M.C., Rotella, J., Newman, W.S., Choi, S., Ustin, J., Sastry, S.S.: Control algorithms for active relative motion cancelling for robotic assisted off-pump coronary artery bypass graft surgery. In: Proc. of the 12th International Conference on Advanced Robotics (ICAR), pp. 431–436. Seattle, WA, USA (2005)Google Scholar
  14. 14.
    Cuvillon, L., Gangloff, J., DeMathelin, M., Forgione, A.: Toward robotized beating heart TECABG: Assessment of the heart dynamics using high-speed vision. In: Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 2, pp. 551–558. Palm Springs, USA (2005)Google Scholar
  15. 15.
    Duindam, V., Sastry, S.: Geometric motion estimation and control for robotic-assisted beating-heart surgery. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Sys. (IROS), pp. 871–876. San Diego, CA, USA (2007)Google Scholar
  16. 16.
    Falk, V.: Manual control and tracking-a human factor analysis relevant for beating heart surgery. Ann. Thorac. Surg. 74, 624–628 (2002)CrossRefGoogle Scholar
  17. 17.
    Franke, T., Bebek, O., Cavusoglu, M.C.: Improved prediction of heart motion using an adaptive filter for robot assisted beating heart surgery. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Sys. (IROS), pp. 509–515. San Diego, CA, USA (2007)Google Scholar
  18. 18.
    Franke, T., Bebek, O., Cavusoglu, M.C.: Prediction of heartbeat motion with a generalized adaptive filter. In: Proc. Int. Conf. Robot. Autom. (ICRA), pp. 2916–2921. Pasadena, CA, USA (2008)Google Scholar
  19. 19.
    Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice-a survey. Automatica 25(3), 335–348 (1989)MATHCrossRefGoogle Scholar
  20. 20.
    Gilhuly, T.J., Salcudean, S.E., Lichtenstein, S.V.: Evaluating optical stabilization of the beating heart. IEEE Eng. Med. Biol. Mag. 22(4), 133–140 (2003)CrossRefGoogle Scholar
  21. 21.
    Ginhoux, R., Gangloff, J.A., DeMathelin, M.F., Soler, L., Leroy, J., Sanchez, M.M.A., Marescaux, J.: Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans. Robot. 21(1), 67–79 (2005)CrossRefGoogle Scholar
  22. 22.
    Groeger, M., Ortmaier, T., Sepp, W., Hirzinger, G.: Tracking local motion on the beating heart. In: Proc. of the SPIE Medical Imaging Conference, vol. 4681 of SPIE, pp. 233–241. San Diego, CA, USA (2002)Google Scholar
  23. 23.
    Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice Hall, New Jersey (2001)Google Scholar
  24. 24.
    Kode, V.R.C.: Design and characterization of a novel hybrid actuator using shape memory alloy and D.C. motor for minimally invasive surgery applications. M.S. thesis, Case Western Reserve University, Cleveland, OH, USA (2006)Google Scholar
  25. 25.
    Kode, V.R.C., Cavusoglu, M.C.: Millirobotic tools for minimal invasive surgery: Video of hybrid gripper tests. Video (2006). URL http://robotics.case.edu/research.html#medicalrobotics
  26. 26.
    Kode, V.R.C., Cavusoglu, M.C.: Design and characterization of a novel hybrid actuator using shape memory alloy and dc micro-motor for minimally invasive surgery applications. IEEE/ASME Trans. Mech. 12(4), 455–464 (2007)CrossRefGoogle Scholar
  27. 27.
    Kode, V.R.C., Cavusoglu, M.C., Tabib-Azar, M.: Design and characterization of a novel hybrid actuator using shape memory alloy and DC motor for minimally invasive surgery applications. In: In Proc. IEEE Int. Conf. Mech. Autom. (ICMA), pp. 416–420. Niagara Falls, Ontario, Canada (2005)Google Scholar
  28. 28.
    Koransky, M.L., Tavana, M.L., Yamaguchi, A., Robbins, R.: Quantification of mechanical stabilization for the performance of offpump coronary artery surgery. In: Proc. of the Meeting of the International Society for Minimally Invasive Cardiac Surgery (ISMICS). Munich, Germany (2001). (Abstract)Google Scholar
  29. 29.
    Koster, M.P.: Flexural joints in mechanisms. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 2, pp. 855–859 (2000)Google Scholar
  30. 30.
    Madhani, A.J., Niemeyer, G., Salisbury, J.K.: The black falcon: a teleoperated surgical instrument for minimally invasive surgery. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Sys. (IROS), vol. 2, pp. 936–944. Victoria, BC, Canada (1998)Google Scholar
  31. 31.
    Malmivuo, J., Plonsey, R.: Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)Google Scholar
  32. 32.
    Mark B. Ratcliffe, M.: Personal Communication Chief of Surgery, San Francisco VA Medical Center, Professor in ResidenceGoogle Scholar
  33. 33.
    Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. In: Proc. Int. Conf. Robot. Autom. (ICRA), vol. 2, pp. 2014–2019. Seoul, Korea (2001)Google Scholar
  34. 34.
    Newman, M.F., Kirchner, J.L., Phillips-Bute, B., Gaver, V., Grocott, H., Jones, R.H., et al.: Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 344(6), 395–402 (2001)CrossRefGoogle Scholar
  35. 35.
    Ortmaier, T.: Motion compensation in minimally invasive robotic surgery. Doctoral thesis, Technical University of Munich, Germany (2003)Google Scholar
  36. 36.
    Ortmaier, T., Groeger, M., Boehm, D.H., Falk, V., Hirzinger, G.: Motion estimation in beating heart surgery. IEEE Trans. Biomed. Eng. 52(10), 1729–1740 (2005)CrossRefGoogle Scholar
  37. 37.
    PhysioNet: MIT-BIH Arrhythmia Database (1980). URL http://www.physionet.org/physiobank/database/mitdb/
  38. 38.
    Puskas, J.D., Wright, C.E., Ronson, R.S., Brown, W.M., Gott, J.P., Guyton, R.A.: Off-pump multi-vessel coronary bypass via sternotomy is safe and effective. Ann. Thorac. Surg. 66(3), 1068–1072 (1998)CrossRefGoogle Scholar
  39. 39.
    Riviere, C., Thakral, A., Iordachita, I.I., Mitroi, G., Stoianovici, D.: Predicting respiratory motion for active canceling during percutaneous needle insertion. In: Proc. Int. Conf. IEEE EMBS (EMBC), pp. 3477–3480. Istanbul, Turkey (2001)Google Scholar
  40. 40.
    Rotella, J.: Predictive tracking of quasi periodic signals for active relative motion cancellation in robotic assisted coronary artery bypass graft surgery. M.S. thesis, Case Western Reserve University, Cleveland, OH, USA (2004)Google Scholar
  41. 41.
    Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M., Adler, J.: Robotic motion compensation for respiratory movement during radiosurgery. Comput. Aided Surg. 5(4), 263–77 (2000)CrossRefGoogle Scholar
  42. 42.
    Sharma, K., Newman, W.S., Weinhous, M., Glosser, G., Macklis, R.: Experimental evaluation of a robotic image-directed radiation therapy system. In: Proc. Int. Conf. Robot. Autom. (ICRA), vol. 3, pp. 2913–2918. San Francisco, CA, USA (2000)Google Scholar
  43. 43.
    Shechter, G., Resar, J.R., McVeigh, E.R.: Displacement and velocity of the coronary arteries: Cardiac and respiratory motion. IEEE Trans. Med. Imag. 25(3), 369–375 (2006)CrossRefGoogle Scholar
  44. 44.
    Taylor, R.H., Stoianovici, D.: Medical robotics in computer integrated surgery. IEEE Trans. Robot. Automat. 19(5), 765–781 (2003)CrossRefGoogle Scholar
  45. 45.
    Thakral, A., Wallace, J., Tomlin, D., Seth, N., Thakor, N.V.: Surgical motion adaptive robotic technology (S.M.A.R.T.): Taking the motion out of physiological motion. In: Proc. of 4th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 317–325. Utrecht, The Netherlands (2001)Google Scholar
  46. 46.
    Trejos, A.L., Salcudean, S.E., Sassani, F., Lichtenstein, S.: On the feasibility of a moving support for surgery on the beating heart. In: Proc. of Medical Image Computing and Computer-Assisted Interventions (MICCAI), pp. 1088–1097. Cambridge, UK (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer SciencesCase Western Reserve UniversityClevelandUSA

Personalised recommendations