Multi-modality Imaging for the Simulation of Cerebral Aneurysm Blood Flow Dynamics

  • Christof Karmonik
  • Yi Jonathan Zhang
  • Robert G. Grossman


Cerebral aneurysms are pathological local expansions of intracranial arteries. These expansions can affect only a portion of the artery wall (sidewall aneurysms), the whole wall (fusiform aneurysm) or can occur at the bifurcation of arteries (bifurcation aneurysm, Fig. 1).

The size of these aneurysms can vary ranging from a few millimeters (small) to centimeters (large). While symptoms of cerebral aneurysms may include ischemic events, seizures, headaches or cranial nerve palsy, sometimes, aneurysms may not show any symptoms at all. The real danger of a cerebral aneurysm is rupture, an event, in which blood exits the aneurysm wall into the brain parenchyma, resulting in subarachnoid hemorrhage (SAH). SAH is the reason of about 8% of all hemorrhagic strokes (the third leading cause of death in the United States), and 4/5 of all SAH occurrences are caused by the rupture of a cerebral aneurysm [1, 2].


Wall Shear Stress Intracranial Aneurysm Cerebral Aneurysm Parent Artery Aneurysm Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sekhar LN, Heros RC (1981) Origin, growth, and rupture of saccular aneurysms: a review. Neurosurgery 8(2):248–260CrossRefGoogle Scholar
  2. 2.
    van Gijn JRG (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 1(24):249–278CrossRefGoogle Scholar
  3. 3.
    Deruty R, Pelissou-Guyotat I, Mottolese C, Amat D (1996) Management of unruptured cerebral aneurysms. Neurol Res 18(1):39–44Google Scholar
  4. 4.
    Kassell NF, Torner JC, Haley EC Jr, Jane JA, Adams HP, Kongable GL (1990) The international cooperative study on the timing of aneurysm surgery. Part 1: overall management results. J Neurosurg 73(1):18–36Google Scholar
  5. 5.
    Rasmussen PA, Mayberg MR (2004) Defining the natural history of unruptured aneurysms. Stroke 35(1):232–233CrossRefGoogle Scholar
  6. 6.
    Mayer SA, Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Connolly ES Jr (2002) Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology 59(11):1750–1758CrossRefGoogle Scholar
  7. 7.
    Hackett ML, Anderson CS (2000) Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study. The Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology 55(5):658–662Google Scholar
  8. 8.
    Ropper AH, Zervas NT (1984) Outcome 1 year after SAH from cerebral aneurysm. Management morbidity, mortality, and functional status in 112 consecutive good-risk patients. J Neurosurg 60(5):909–915Google Scholar
  9. 9.
    Broderick JP, Broat TG, Duldner JE, Tomsick T, Leach A (1994) Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25:1342–1347Google Scholar
  10. 10.
    Kassell NLG (2001) Unruptured intracranial aneurysms: in search of the best management strategy. Stroke 32:603–605Google Scholar
  11. 11.
    Leblanc R, Worsley KJ (1995) Surgery of unruptured, asymptomatic aneurysms: a decision analysis. Can J Neurol Sci 22(1):30–35Google Scholar
  12. 12.
    Chang HS, Kirino T (1995) Quantification of operative benefit for unruptured cerebral aneurysms: a theoretical approach. J Neurosurg 83(3):413–420CrossRefGoogle Scholar
  13. 13.
    Raaymakers TW, Rinkel GJ, Limburg M, Algra A (1998) Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis. Stroke 29:1531–1538Google Scholar
  14. 14.
    King JT Jr, Berlin JA, Flamm ES (1994) Morbidity and mortality from elective surgery for asymptomatic, unruptured, intracranial aneurysms: a meta-analysis. J Neurosurg 81(6):837–842CrossRefGoogle Scholar
  15. 15.
    van Crevel H, Habbema JD, Braakman R (1986) Decision analysis of the management of incidental saccular aneurysm. Neurology 36:1335–1339Google Scholar
  16. 16.
    Guglielmi G, Vinuela F, Dion J, Duckwiler G (1991) Electrothrombosis of saccular aneurysms via endovascular approach. Part 2: preliminary clinical experience. J Neurosurg 75(1):8–14Google Scholar
  17. 17.
    Raymond J, Roy D, Bojanowski M, Moumdjian R, L’Esperance G (1997) Endovascular treatment of acutely ruptured and unruptured aneurysms of the basilar bifurcation. J Neurosurg 86(2):211–219CrossRefGoogle Scholar
  18. 18.
    Raymond J, Roy D (1997) Safety and efficacy of endovascular treatment of acutely ruptured aneurysms. Neurosurgery 41(6):1235–1245; discussion 1245–1236Google Scholar
  19. 19.
    Roy D, Raymond J, Bouthillier A, Bojanowski MW, Moumdjian R, L’Esperance G (1997) Endovascular treatment of ophthalmic segment aneurysms with Guglielmi detachable coils. AJNR Am J Neuroradiol 18(7):1207–1215Google Scholar
  20. 20.
    Willinsky RA (1999) Detachable coils to treat intracranial aneurysms. CMAJ 161(9):1136Google Scholar
  21. 21.
    Nepper-Rasmussen HJ, Andersen PB, Edal AL (1999) [Subarachnoid hemorrhage and intracranial aneurysms]. Ugeskr Laeger 161(45):6211Google Scholar
  22. 22.
    van Rooj WJ, Sluzewski M, Wijnalda D, Verhagen I, Schellens RL, op de Coul AA (1996) Intravascular treatment of inoperable cerebral aneurysm using Guglielmil’s spirals; initial results in the Netherlands. Ned Tijdschr Geneeskd 140:491–495Google Scholar
  23. 23.
    Molyneux A, Kerr R (1999) International subarachnoid aneurysm trial. J Neurosurg 91(2): 352–353Google Scholar
  24. 24.
    Murayama Y, Vinuela F, Duckwiler GR, Gobin YP, Guglielmi G (1999) Embolization of incidental cerebral aneurysm by using the Guglielmi detachable coil system. J Neurosurg 90:207–214CrossRefGoogle Scholar
  25. 25.
    Roy D, Milot G, Raymond J (2001) Endovascular treatment of unruptured aneurysms. Stroke 32(9):1998–2004CrossRefGoogle Scholar
  26. 26.
    Jou LD, Mohamed A, Lee DH, Mawad ME (2007) 3D rotational digital subtraction angiography may underestimate intracranial aneurysms: findings from two basilar aneurysms. AJNR Am J Neuroradiol 28(9):1690–1692CrossRefGoogle Scholar
  27. 27.
    Broderick JP, Viscoli CM, Brott T, Kernan WN, Brass LM, Feldmann E, Morgenstern LB, Wilterdink JL, Horwitz RI (2003) Major risk factors for aneurysmal subarachnoid hemorrhage in the young are modifiable. Stroke 34(6):1375–1381CrossRefGoogle Scholar
  28. 28.
    Suarez JI, Tarr RW, Selman WR (2006) Aneurysmal subarachnoid hemorrhage. N Engl J Med 354(4):387–396CrossRefGoogle Scholar
  29. 29.
    Weir B (2002) Unruptured intracranial aneurysms: a review. J Neurosurg 96(1):3–42CrossRefGoogle Scholar
  30. 30.
    German W, Black P (1954) Intra-aneurysmal hemodynamics: turbulence. Trans Am Neurol Assoc 79:163–165Google Scholar
  31. 31.
    Karmonik C, Arat A, Benndorf G, Akpek S, Klucznik R, Mawad ME, Strother CM (2004) A technique for improved quantitative characterization of intracranial aneurysms. AJNR Am J Neuroradiol 25(7):1158–1161Google Scholar
  32. 32.
    Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, Nakajima H, Hori T, Takakura K, Kajiya F (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45(1):119–129; discussion 129–130Google Scholar
  33. 33.
    Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48(3):495–502; discussion 502–493Google Scholar
  34. 34.
    Black SP, Leo HL, Carson WL (1988) Recording and measuring the interior features of intracranial aneurysms removed at autopsy: method and initial findings. Neurosurgery 22(1 Pt 1):40–44CrossRefGoogle Scholar
  35. 35.
    Ma B, Harbaugh RE, Raghavan ML (2004) Three-dimensional geometrical characterization of cerebral aneurysms. Ann Biomed Eng 32(2):264–273CrossRefGoogle Scholar
  36. 36.
    Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, Hopkins LN (2004) Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg 101(4):676–681CrossRefGoogle Scholar
  37. 37.
    Castro MA, Putman CM, Cebral JR (2006) Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am J Neuroradiol 27(10): 2061–2068Google Scholar
  38. 38.
    Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 26(10):2550–2559Google Scholar
  39. 39.
    Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J (2006) CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9(Pt 2): 438–445Google Scholar
  40. 40.
    Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23(9):647–655CrossRefGoogle Scholar
  41. 41.
    Hoi Y, Woodward SH, Kim M, Taulbee DB, Meng H (2006) Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng 128(6):844–851CrossRefGoogle Scholar
  42. 42.
    Jou LD, Quick CM, Young WL, Lawton MT, Higashida R, Martin A, Saloner D (2003) Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am J Neuroradiol 24(9):1804–1810Google Scholar
  43. 43.
    Karmonik C, Benndorf G, Klucznik R, Haykal H, Strother CM (2006) Wall shear stress variations in basilar tip aneurysms investigated with computational fluid dynamics. Conf Proc IEEE Eng Med Biol Soc 1:3214–3217CrossRefGoogle Scholar
  44. 44.
    Karmonik C, Klucznik R, Benndorf G (2008) Comparison of velocity patterns in an AComA aneurysm measured with 2D phase contrast MRI and simulated with CFD. Technol Health Care 16(2):119–128Google Scholar
  45. 45.
    Karmonik C, Klucznik R, Benndorf G (2008) Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics – preliminary experience. Rofo 180(3):209–215Google Scholar
  46. 46.
    Mantha A, Karmonik C, Benndorf G, Strother C, Metcalfe R (2006) Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol 27(5):1113–1118Google Scholar
  47. 47.
    Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24(4):559–566Google Scholar
  48. 48.
    Benndorf G, Singel S, Proest G, Lanksch W, Felix R (1997) The Doppler guide wire: clinical applications in neuroendovascular treatment. Neuroradiology 39(4):286–291CrossRefGoogle Scholar
  49. 49.
    Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7(4):229–254Google Scholar
  50. 50.
    Pipe JG (2003) A simple measure of flow disorder and wall shear stress in phase contrast MRI. Magn Reson Med 49(3):543–550CrossRefGoogle Scholar
  51. 51.
    Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1996) Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng 118(3):280–286CrossRefGoogle Scholar
  52. 52.
    Tateshima S, Murayama Y, Villablanca JP, Morino T, Takahashi H, Yamauchi T, Tanishita K, Vinuela F (2001) Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J Neurosurg 95(6): 1020–1027CrossRefGoogle Scholar
  53. 53.
    Tateshima S, Tanishita K, Omura H, Villablanca JP, Vinuela F (2007) Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. AJNR Am J Neuroradiol 28(4):622–627Google Scholar
  54. 54.
    Baumgartner RW (1999) Transcranial color-coded duplex sonography. J Neurol 246(8): 637–647CrossRefGoogle Scholar
  55. 55.
    Gailloud P, Khan HG, Albayram S, Martin JB, Rufenacht DA, Murphy KJ (2002) Pooling of echographic contrast agents during transcranial Doppler sonography: a sign in favor of slow-flowing giant saccular aneurysms. Neuroradiology 44(1):21–24CrossRefGoogle Scholar
  56. 56.
    Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35(11):2500–2505CrossRefGoogle Scholar
  57. 57.
    Malek AM, Izumo S (1995) Control of endothelial cell gene expression by flow. J Biomech 28(12):1515–1528CrossRefGoogle Scholar
  58. 58.
    Jou LD, Wong G, Dispensa B, Lawton MT, Higashida RT, Young WL, Saloner D (2005) Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am J Neuroradiol 26(9):2357–2363Google Scholar
  59. 59.
    Acevedo-Bolton G, Jou LD, Dispensa BP, Lawton MT, Higashida RT, Martin AJ, Young WL, Saloner D (2006) Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report. Neurosurgery 59(2):E429–E430; author reply E429–E430Google Scholar
  60. 60.
    Cebral JR, Pergolizzi RS Jr, Putman CM (2007) Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad Radiol 14(7):804–813CrossRefGoogle Scholar
  61. 61.
    Karmonik C, Benndorf G, Haykal H, Klucznik R (2007) Comparison of blood inflow patterns into AComA aneurysms determined with 3D DSA and simulated with CFD. Chicago, ILGoogle Scholar
  62. 62.
    Karmonik C, Benndorf G, Klucznik R, Haykal H, Strother CM (2006) Wall shear stress variations in basilar tip aneurysms investigated with computational fluid dynamics. New York, NYGoogle Scholar
  63. 63.
    Karmonik C, Yen C, Grossman RG, Klucznik R, Benndorf G (2009) Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates. Acta Neurochir (Wien) 151(5):479–485CrossRefGoogle Scholar
  64. 64.
    Karmonik C, Benndorf G, Klucznik RHH, Strother C (2006) Comparison of cerebral intra-aneurysm flow characteristics determined by phase contrast magnetic resonance imaging and computational fluid dynamics simulations. New York, NY. ISMRMGoogle Scholar
  65. 65.
    Karmonik C, Morsi H, Mawad M (2005) Flow patterns in intracranial aneurysms before and after treatment – simulated with computational fluid dynamics. p 144Google Scholar
  66. 66.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modelling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54(6–8):901–922MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Frydrychowicz A, Berger A, Russe MF, Stalder AF, Harloff A, Dittrich S, Hennig J, Langer M, Markl M (2008) Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. J Thorac Cardiovasc Surg 136(2):400–407CrossRefGoogle Scholar
  68. 68.
    Harloff A, Albrecht F, Spreer J, Stalder AF, Bock J, Frydrychowicz A, Schollhorn J, Hetzel A, Schumacher M, Hennig J, Markl M (2009) 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med 61(1):65–74CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christof Karmonik
    • 1
  • Yi Jonathan Zhang
    • 1
  • Robert G. Grossman
    • 1
  1. 1.The Methodist Hospital Neurological InstituteHoustonUSA

Personalised recommendations