Image-Guided Interventions and Robotics

  • Bernard Bayle
  • Oliver Piccin
  • Laurent Barbé
  • Pierre Renaud
  • Michel de Mathelin


Interventional radiology (IR) is a branch of medicine in which radiologists perform diagnoses or treatments with needles, catheters, or probes, guided by one or several imaging modalities [1]. In many cases, these procedures offer a minimally invasive alternative to traditional surgery. The long list of indications for IR procedures justifies the interest it has aroused in recent years [2].

Vascular interventions are performed with catheters directly introduced by endovenous or endoarterial approach. There are two main categories of treatments: embolization (occlusion) or angioplasty (opening). Embolizations can be performed to stop bleeding, to inject therapeutic drugs, or to provoke tumor ischemia, for example. In angioplasty, narrowed or obstructed vessels are released by inflating balloons located at the tip of a catheter.

Nonvascular interventions are fast-developing procedures. They are performed with needles or needle-shaped tools. They can be used for diagnosis, as the biopsies that consist in the removal of tissue samples for analysis purpose. They can also be used for therapy by guiding tools directly into the target, for instance, to perform tumor ablation. Radiofrequency ablation is an example of such a procedure, performed with a needle-like probe placed into the tumor and used to cook cancer cells. IR also improves the repairing process of fractured vertebra. Using a percutaneous guide inserted in the vertebra under radiography control, bone cement is injected to consolidate the vertebra, which offers an alternative to open orthopedic surgery with less trauma.


Force Feedback Needle Insertion Robotic Device Master Manipulator Dielectric Elastomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kaufman JA, Lee MJ (2004) Vascular and interventional radiology – The requesites. MosbyGoogle Scholar
  2. 2.
    Society of interventional radiology (2008)
  3. 3.
    Zeego. (2008) The artis zeego multi-axis system. http://www.medical.siemens. com
  4. 4.
    ACR-RNSA. (2008) Radiology info.
  5. 5.
    Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N, Watson V, Kavoussi L (2003) Acubot: a robot for radiological interventions. IEEE Trans Robot Automat 19:927–930CrossRefGoogle Scholar
  6. 6.
    Piccin O, Barbé L, Bayle B, de Mathelin M, Gangi A (2009) Force feedback teleoperated needle insertion device for percutaneous procedures. Int J Rob Res 28(9):1154–1168CrossRefGoogle Scholar
  7. 7.
    Tsekos NV, Chrisotoforou E, Ozcan A (2008) A general-purpose MR-compatible robotic system. IEEE Eng Med Biol Mag 27:51–58CrossRefGoogle Scholar
  8. 8.
    Melzer A, Gutmann B, Remmle T, Wolf R, Luboscheck A, Block M, Barden-heuer H, Fischer H (2008) INNOMOTION for percutaneous image-guided interventions. IEEE Eng Med Biol Mag 27:66–73CrossRefGoogle Scholar
  9. 9.
    Zemiti N, Bricault I, Fouard C, Sanchez B, Cinquin P (2008) LPR: A CT and MR-compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Trans Mechatron 13:306–315CrossRefGoogle Scholar
  10. 10.
    Ahrar J, Javadi S, Valenzuela Y, Gupta S, Stafford R, Ahrar K (2008) MRI-guided biopsy using a high field strength magnet: Initial experience with 95 patients. In 94th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, USAGoogle Scholar
  11. 11.
    Shah S, Kapoor A, Ding J, Guion P, Petrisor D, Karanian J, Pritchard WF, Stoianovici D, Wood B, Cleary K (2008) Robotically assisted needle driver: evaluation of safety release, force profiles, and needle spin in a swine abdominal model. Int J Comput Assist Radiol Surg 3: 173–179CrossRefGoogle Scholar
  12. 12.
    Barrett J, Keat N (2003) Artefacts in ct: recognition and avoidance. ImPACT, London, UK.
  13. 13.
    Maurin B, Bayle B, Piccin O, Gangloff J, de Mathelin M, Doignon C, Zanne P, Gangi A (2008) A patient-mounted robotic platform for CT-scan guided procedures. IEEE Transact Biomed Eng 55:2417–2425CrossRefGoogle Scholar
  14. 14.
    Stoianovici D, Cadeddu J, Demaree R, Basile H, Taylor R, Whitcomb L, Kavoussi L (1997) A novel mechanical transmission applied to percutaneous renal access. Proceedings of the ASME Dynamic Systems and Control Division 61:401–406Google Scholar
  15. 15.
    Webster RJ, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM (2006) Nonholo-nomic modeling of needle steering. Int J Robot Res 25:509–525CrossRefGoogle Scholar
  16. 16.
    Chinzei K, Kikinis R, Jolesz F (1999) MR compatibility of mechatronic devices: Design criteria. Med Image Comput Comput Assist Interv 1679:1020–1031CrossRefGoogle Scholar
  17. 17.
    Bricault I, Jauniaux E, Zemiti N, Fouard C, Taillant E, Dorandeu F, Cinquin P (2008) LPR: a light puncture robot for CT and MRI interventions. IEEE Eng Med Biol Magzine 27:42–50CrossRefGoogle Scholar
  18. 18.
    Tada M, Kanade T (2005) Design of an MR-compatible three-axis force sensor. IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2618–2623Google Scholar
  19. 19.
    Fischer G, Iordachita I, Csoma C, Tokuda J, DiMaio S, Tempany C, Hata N, Fichtinger G (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ ASME Trans Mechatron 13:295–305CrossRefGoogle Scholar
  20. 20.
    Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L (2007) A new type of motor: pneumatic step motor. IEEE/ASME Trans Mechatron 12:98–106CrossRefGoogle Scholar
  21. 21.
    Ganesh G, Gassert R, Burdet E, Bleuler H (2004) Dynamics and control of an MRI compatible master-slave system with hydrostatic transmission. IEEE International Conference on Robotics and Automation, New-Orleans, USA, 1288–1294Google Scholar
  22. 22.
    Okayasu H, Okamoto J, Fujie M, Umezu M, Iseki H (2003) Development of a hydraulic-driven flexible manipulator for neurosurgery. CARS 1256:607–613Google Scholar
  23. 23.
    Tadakuma K, DeVita L, Plante J, Shaoze Y, Dubowsky S (2005) The experimental study of a precision parallel manipulator with binary actuation: with application to MRI cancer treatment. IEEE International Conference on Robotics and Automation, Pasadena, USA, 2503–2508Google Scholar
  24. 24.
    Carpi F, Khanicheh A, Mavroidis C, DeRossi D (2008) MRI compatibilityof silicone-made contractile dielectric elastomer actuators. IEEE/ASME Trans Mechatron 13:370–374CrossRefGoogle Scholar
  25. 25.
    Beekley (2009)
  26. 26.
    Robin medical (2009)
  27. 27.
    Chapuis D, Gassert R, Sache L, Burdet E, Bleuler H (2004) Design of a simple MRI/fMRI compatible force/torque sensor. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2593–2599Google Scholar
  28. 28.
    Stoianovici D, Whitcomb L, Anderson J, Taylor R, Kavoussi L (1998) A modular surgical robotic system for image guided percutaneous procedures. Medical Image Computing and Computer-Assisted Intervention, Cambridge, USAGoogle Scholar
  29. 29.
    Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L, Cleary K, Stoianovici D (2006) Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68:1313–1317CrossRefGoogle Scholar
  30. 30.
    Muntener M, Patriciu A, Petrisor D, Schar M, Ursu D, Song D, Stoianovici D (2008) Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology 247:543–549CrossRefGoogle Scholar
  31. 31.
    Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D (2006) Interventional robotic systems: applications and technology state-of-the-art. Minim Invasive Ther Allied Technol 15:101–113CrossRefGoogle Scholar
  32. 32.
    Hempel E, Fischer H, Gumb L, Hohn T, Krause H, Voges U, Breitwieser H, Gutmann B, Durke J, Bock M, Melzer A (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8:180–191CrossRefGoogle Scholar
  33. 33.
    Taillant E, Avila-Vilchis J-C, Bricault I, Cinquin P (2004) CT and MR compatible light puncture robot: architectural design and first experiments. Medical Image Computing and Computer-Assisted Intervention, Saint-Malo, France, 145–152Google Scholar
  34. 34.
    Barbé L, Bayle B, Piccin O, Gangloff J, de Mathelin M (2007) Design and evaluation of a linear haptic device. In IEEE Conference on Robotics and Automation, Roma, ItalyGoogle Scholar
  35. 35.
    Barbé L, Bayle B, de Mathelin M, Gangi A (2007) In vivo model estimation and haptic characterization of needle insertions. Int J Robot Res 26:1283–1301CrossRefGoogle Scholar
  36. 36.
    Kronreif G, Fürst M Ptacek W, Kornfeld M, Kettenbach J (2006) Robotic system for image guided therapy – B-robii. International Workshop on Robotics in Alpe-Adira-Danube Region, Balatonfüred Lake Balaton, HungaryGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bernard Bayle
    • 1
  • Oliver Piccin
    • 1
  • Laurent Barbé
    • 1
  • Pierre Renaud
    • 1
  • Michel de Mathelin
    • 1
  1. 1.LSIIT, University of StrasbourgStrasbourgFrance

Personalised recommendations