MRI-Guided Robot-Assisted Interventions: An Opportunity and a Challenge in Computational Surgery

  • Nikolaos V. Tsekos
  • Erol Yeniaras
  • Ahmet Eren Sonmez


Currently, we are witnessing the rapid evolution of minimally invasive surgeries (MIS) and image-guided interventions (IGI) for offering improved patient management and cost effectiveness. It is well recognized that sustaining and expanding this paradigm shift would require new computational methodology that integrates multimodal sensing (including imaging), controlled systems (including robots and smart actuators), the patient and the operator (e.g., [1–9] and references therein). Looking into the potential future evolution in MIS and IGI among the sought directions is the incorporation of real-time image guidance (RTIG) that can provide volumetric and high information-content visualization of the Area of Operation (AoO). Such approach would include (1) assessing in real-time tissue deformation secondary to the procedure and physiologic motion, (2) monitoring the tool(s) in 3D, and (3) updating information about the pathophysiology of the targeted tissue. With those capabilities, RTIG may facilitate a paradigm shift and methodological leap from “keyhole” visualization (i.e., endoscopy or laparoscopy) to one that uses a volumetric and information-rich perception of the AoO. This capability may eventually enable a wider range and level of complexity IGI and MIS [8, 10–12].


Magnetic Resonance Image Scanner Minimally Invasive Surgery Robotic Manipulator Ultrasonic Motor Computational Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



NVT is grateful to Professors Eftychios Christoforou (University of Cyprus), Alpay Ozcan and Christine Menias (Washington University) for their contributions. This work was supported in part by NSF CPS-0932272, HEAF 97722, and NIH RO1HL067924.


  1. 1.
    Anderson CA, Kypson AP, Chitwood WR Jr (2008) Robotic mitral surgery: current and future roles. Curr Opin Cardiol 23:117–120CrossRefGoogle Scholar
  2. 2.
    Anderson CA, Rodriguez E, Chitwood WR Jr (2007) Robotically assisted coronary surgery: what is the future? Curr Opin Cardiol 22:541–544CrossRefGoogle Scholar
  3. 3.
    Boyd WD, Kodera K, Stahl KD, Rayman R (2002) Current status and future directions in computer-enhanced video- and robotic-assisted coronary bypass surgery. Semin Thorac Cardiovasc Surg 14:101–109CrossRefGoogle Scholar
  4. 4.
    Cohn LH (2006) Future directions in cardiac surgery. Am Heart Hosp J 4:174–178CrossRefGoogle Scholar
  5. 5.
    Goh P, Tekant Y, Krishnan SM (1993) Future developments in high-technology abdominal surgery: ultrasound, stereo imaging, robotics. Baillieres Clin Gastroenterol 7:961–987CrossRefGoogle Scholar
  6. 6.
    Menciassi A, Quirini M, Dario P (2007) Microrobotics for future gastrointestinal endoscopy. Minim Invasive Ther Allied Technol 16:91–100CrossRefGoogle Scholar
  7. 7.
    Nathoo N, Vogelbaum M, Barnett G (2005) In touch with robotics: neurosurgery for the future. Neurosurgery 56:421–433CrossRefGoogle Scholar
  8. 8.
    Reijnen MM, Zeebregts CJ, Meijerink WJ (2005) Future of operating rooms. Surg Technol Int 14:21–27Google Scholar
  9. 9.
    Taylor GW Jayne DG (2007) Robotic applications in abdominal surgery: their limitations and future developments. Int J Med Robot 3:3–9Google Scholar
  10. 10.
    Woo YJ (2006) Robotic cardiac surgery. Int J Med Robot 2:225–232Google Scholar
  11. 11.
    Muntener M, Ursu D, Patriciu A, Petrisor D, Stoianovici D (2006) Robotic prostate surgery. Expert Rev Med Devices 3:575–584CrossRefGoogle Scholar
  12. 12.
    Ito F Gould JC (2006) Robotic foregut surgery. Int J Med Robot 2:287–292Google Scholar
  13. 13.
    Aschoff AJ, Rafie N, Jesberger JA, Duerk JL, Lewin JS (2000) Thermal lesion conspicuity following interstitial radiofrequency thermal tumor ablation in humans: a comparison of STIR, turbo spin-echo T2-weighted, and contrast-enhanced T1-weighted MR images at 0.2 T. J Magn Reson Imaging 12:584–589CrossRefGoogle Scholar
  14. 14.
    Boaz TL, Lewin JS, Chung YC, Duerk JL, Clampitt ME, Haaga JR (1998) MR monitoring of MR-guided radiofrequency thermal ablation of normal liver in an animal model. J Magn Reson Imaging 8:64–69CrossRefGoogle Scholar
  15. 15.
    McDannold NJ Jolesz FA (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11:191–202Google Scholar
  16. 16.
    Merkle EM, Shonk JR, Duerk JL, Jacobs GH, Lewin JS (1999) MR-guided RF thermal ablation of the kidney in a porcine model. AJR Am J Roentgenol 173:645–651Google Scholar
  17. 17.
    Tacke J, Speetzen R, Adam G, Sellhaus B, Glowinski A, Heschel I, Schaffter T, Schorn R, Grosskortenhaus S, Rau G, Gunther RW (2001) Experimental MR imaging-guided interstitial cryotherapy of the brain. AJNR Am J Neuroradiol 22:431–440Google Scholar
  18. 18.
    Atalar E, Kraitchman DL, Carkhuff B, Lesho J, Ocali O, Solaiyappan M, Guttman MA, Charles HK Jr (1998) Catheter-tracking FOV MR fluoroscopy. Magn Reson Med 40:865–872CrossRefGoogle Scholar
  19. 19.
    Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS, Duerk JL (2004) Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil. Magn Reson Med 51:668–675CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Wendt M, Aschoff AJ, Zheng L, Lewin JS, Duerk JL (2000) Active MR guidance of interventional devices with target-navigation. Magn Reson Med 44:56–65CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Wendt M, Aschoff AJ, Lewin JS, Duerk JL (2001) A multielement RF coil for MRI guidance of interventional devices. J Magn Reson Imaging 14:56–62MATHCrossRefGoogle Scholar
  22. 22.
    Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JW, Atalar E (2004) MR-trackable intramyocardial injection catheter. Magn Reson Med 51:1163–1172CrossRefGoogle Scholar
  23. 23.
    Wacker FK, Hillenbrand CM, Duerk JL, Lewin JS (2005) MR-guided endovascular interventions: device visualization, tracking, navigation, clinical applications, and safety aspects. Magn Reson Imaging Clin N Am 13:431–439CrossRefGoogle Scholar
  24. 24.
    Ozcan A, Christoforou E, Brown D, Tsekos N (2006) Fast and efficient radiological interventions via a graphical user interface commanded magnetic resonance compatible robotic device. Conf Proc IEEE Eng Med Biol Soc 1:1762–1767CrossRefGoogle Scholar
  25. 25.
    Debatin JF, Adam G (1998) Interventional magnetic resonance imaging. Springer, BerlinGoogle Scholar
  26. 26.
    Jolesz F, Kahn T, Lufkin R (1998) Genesis of interventional MRI. J Magn Reson Imaging 8:2CrossRefGoogle Scholar
  27. 27.
    Jolesz FA (1998) Interventional and intraoperative MRI: a general overview of the field. J Magn Reson Imaging 8:3–7CrossRefGoogle Scholar
  28. 28.
    Lufkin RB (1999) Interventional MRI. Mosby, St. LouisGoogle Scholar
  29. 29.
    Ladd ME, Zimmermann GG, Quick HH, Debatin JF, Boesiger P, von Schulthess GK, McKinnon GC (1998) Active MR visualization of a vascular guidewire in vivo. J Magn Reson Imaging 8:220–225CrossRefGoogle Scholar
  30. 30.
    Jolesz FA, Nabavi A, Kikinis R (2001) Integration of interventional MRI with computer-assisted surgery. J Magn Reson Imaging 13:69–77CrossRefGoogle Scholar
  31. 31.
    Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9:351–387CrossRefGoogle Scholar
  32. 32.
    Hempel E, Fischer H, Gumb L, Hohn T, Krause H, Voges U, Breitwieser H, Gutmann B, Durke J, Bock M, Melzer A (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8:180–191CrossRefGoogle Scholar
  33. 33.
    Pfleiderer SO, Reichenbach JR, Azhari T, Marx C, Malich A, Schneider A, Vagner J, Fischer H, Kaiser WA (2003) A manipulator system for 14-gauge large core breast biopsies inside a high-field whole-body MR scanner. J Magn Reson Imaging 17:493–498CrossRefGoogle Scholar
  34. 34.
    Koseki Y, Washio T, Chinzei K, Iseki H (2002) Endoscope manipulator for trans-nasal neurosurgery, optimized for and compatible to vertical field open MRI. In: Proc medical image computing and computer-assisted intervention. Springer, Tokyo, Japan, pp 114–121Google Scholar
  35. 35.
    Gronemeyer DH, Seibel RM, Schmidt A, Melzer A, Dell M (1996) Two- and three-dimensional imaging for interventional MRI and CT guidance. Stud Health Technol Inform 29:62–76Google Scholar
  36. 36.
    Scholz M, Deli M, Wildforster U, Wentz K, Recknagel A, Preuschoft H, Harders A (1996) MRI-guided endoscopy in the brain: a feasibility study. Minim Invasive Neurosurg 39:33–37CrossRefGoogle Scholar
  37. 37.
    Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K (1995) Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1:242–248CrossRefGoogle Scholar
  38. 38.
    Kaiser WA, Fischer H, Vagner J, Selig M (2000) Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest Radiol 35:513–519CrossRefGoogle Scholar
  39. 39.
    Felden A, Vagner J, Hinz A, Fischer H, Pfleiderer SO, Reichenbach JR, Kaiser WA (2002) ROBITOM-robot for biopsy and therapy of the mamma. Biomed Tech (Berl) 47:2–5CrossRefGoogle Scholar
  40. 40.
    Larson BT, Erdman AG, Tsekos NV, Yacoub E, Tsekos PV, Koutlas IG (2004) Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. J Biomech Eng 126:458–465CrossRefGoogle Scholar
  41. 41.
    Chinzei K, Miller K (2001) Towards MRI guided surgical manipulator. Med Sci Monit 7: 153–163Google Scholar
  42. 42.
    Susil RC, Krieger A, Derbyshire JA, Tanacs A, Whitcomb LL, Fichtinger G, Atalar E (2003) System for MR image-guided prostate interventions: canine study. Radiology 228:886–894CrossRefGoogle Scholar
  43. 43.
    Susil RC, Camphausen K, Choyke P, McVeigh ER, Gustafson GS, Ning H, Miller RW, Atalar E, Coleman CN, Menard C (2004) System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn Reson Med 52:683–687CrossRefGoogle Scholar
  44. 44.
    Tsekos NV, Ozcan A, Christoforou E (2005) A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners. J Biomech Eng 127:972–980CrossRefGoogle Scholar
  45. 45.
    Tsekos NV, Christoforou E, Ozcan A (2008) A general-purpose MR-compatible robotic system: implementation and image guidance for performing minimally invasive interventions. IEEE Eng Med Biol Mag 27:51–58CrossRefGoogle Scholar
  46. 46.
    Ozcan A, Tsekos NV (2008) The interconnection of MRI scanner and MR compatible robotic device: synergistic graphical user interface to form a mechatronic system. IEEE/ASME Trans Mechatron 13:362–369CrossRefGoogle Scholar
  47. 47.
    Christoforou E, Akbudak E, Ozcan A, Karanikolas M, Tsekos NV (2007) Performance of interventions with manipulator-driven real-time MR guidance: implementation and initial in vitro tests. Magn Reson Imaging 25:69–77CrossRefGoogle Scholar
  48. 48.
    Karanikolas M, Christoforou E, Akbudak E, Eisebeis PE, Tsekos NV (2006) An archetype for MRI guided tele-interventions. International Federation for Information Processing. pp 476–483Google Scholar
  49. 49.
    Christoforou E, Tsekos NV (2006) Robotic manipulators with remotely-actuated joints: implementation using drive shafts and u-joints. In: Proc IEEE int conf on robotics and automation. Orlando, FL, pp 2886–2871Google Scholar
  50. 50.
    Pfleiderer SO, Marx C, Vagner J, Franke RP, Reichenbach JR, Kaiser WA (2005) Magnetic resonance-guided large-core breast biopsy inside a 1.5-T magnetic resonance scanner using an automatic system: in vitro experiments and preliminary clinical experience in four patients. Invest Radiol 40:458–463CrossRefGoogle Scholar
  51. 51.
    McVeigh ER, Guttman MA, Lederman RJ, Li M, Kocaturk O, Hunt T, Kozlov S, Horvath KA (2006) Real-time interactive MRI-guided cardiac surgery: aortic valve replacement using a direct apical approach. Magn Reson Med 56:958–964CrossRefGoogle Scholar
  52. 52.
    Hempel E, Fischer H, Gumb L, Hohn T, Krause H, Voges U, Breitwieser H, Gutmann B, Durke J, Bock M, Melzer A (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8:180–191CrossRefGoogle Scholar
  53. 53.
    Karanikolas M, Christoforou E, Akbudak E, Eisebeis PE, Tsekos NV (2006) An archetype for MRI guided tele-interventions. In: International Federation for Information Processing pp 476–483Google Scholar
  54. 54.
    Akbudak E, Zuehlsdorff S, Christoforou E, Ozcan A, Karanikolas M, Tsekos NV (2006) Freehand performance of interventions with manipulator-driven real-time dynamic update of the imaging plane. In: Proceedings of the int soc of magn reson med 14th meeting and exhibition. Seattle, p 1443Google Scholar
  55. 55.
    Jolesz FA (2005) Future perspectives for intraoperative MRI. Neurosurg Clin N Am 16: 201–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nikolaos V. Tsekos
    • 1
  • Erol Yeniaras
    • 1
  • Ahmet Eren Sonmez
    • 1
  1. 1.Medical Robotics Laboratory, Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations