Skip to main content

Abstract

Photopolymerization processes make use of liquid, radiation curable resins, or photopolymers as their primary materials. Most photopolymers react to radiation in the ultraviolet (UV) range of wavelengths, but some visible light systems are used as well. Upon irradiation, these materials undergo a chemical reaction to become solid. This reaction is called photopolymerization, and is typically complex, involving many chemical participants.

Photopolymers were developed in the late 1960s and soon became widely applied in several commercial areas, most notably the coating and printing industry. Many of the glossy coatings on paper and cardboard, for example, are photopolymers. Additionally, photo-curable resins are used in dentistry, such as for sealing the top surfaces of teeth to fill in deep grooves and prevent cavities. In these applications, coatings are cured by radiation that blankets the resin without the need for patterning either the material or the radiation. This changed with the introduction of stereolithography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jacobs PF (1992) Rapid prototyping & manufacturing, fundamentals of stereolithography. Society of Manufacturing Engineers, New York, NY

    Google Scholar 

  2. Tang, Y (2002) Stereolithography (SL) cure modeling. Masters Thesis, School of Chemical Engineering, Georgia Institute of Technology

    Google Scholar 

  3. Beaman JJ, Barlow JW, Bourell DL, Crawford RH, Marcus HL, McAlea KP (1997) Solid freeform fabrication: a new direction in manufacturing. Kluwer Academic Publishers, Boston, MA

    Book  Google Scholar 

  4. Hull CW (1990) Method for production of three-dimensional objects by stereolithography, 3D Systems, Inc. US Patent 4,929,402, 29 May 1990

    Google Scholar 

  5. Murphy EJ, Ansel RE, Krajewski JJ (1989) Investment casting utilizing patterns produced by stereolithography, DeSoto, Inc. US Patent 4,844,144, 4 July, 1989

    Google Scholar 

  6. Wohlers T (1991) Rapid prototyping: an update on RP applications, technology improvements, and developments in the industry. Wohlers Associates

    Google Scholar 

  7. Lu L, Fuh JYH, Nee AYC, Kang ET, Miyazawa T, Cheah CM (1995) Origin of Shrinkage, Distortion and Fracture of Photopolymerized Material, Materials Research Bulletin, Vol. 30, No. 12, pp 1561–1569

    Google Scholar 

  8. Asahi Denka JP (1988) Patent 2,138,471, filed Feb 1988

    Google Scholar 

  9. Asahi Denka JP (1988) Patent 2,590,216, filed Jul 1988

    Google Scholar 

  10. Crivello JV, Dietliker K (1998) Photoinitiators for free radical, cationic & anionic photopolymerisation, 2nd edn, Vol. III. In: Bradley G. (ed) Chemistry & technology of UV & EB formulation for coatings, inks & paints. John Wiley & Sons, Inc., Chichester & New York, in association with SITA Technology Ltd., London, UK

    Google Scholar 

  11. Dufour P (1993) State-of-the-art and trends in radiation curing. In: Fouassier JP, Rabek JF (eds) Radiation curing in polymer science and technology – Vol I: fundamentals and methods. Elsevier Applied Science, London & New York, p P1

    Google Scholar 

  12. Jacobs PF (1996) Stereolithography and other RP&M technologies. Society of Manufacturing Engineers, Dearborn, MI

    Google Scholar 

  13. Wilson JE (1974) Radiation chemistry of monomers, polymers, and plastics. Marcel Dekker, New York

    Google Scholar 

  14. Fouassier JP (1993) An introduction to the basic principles in UV curing. In: Fouassier JP, Rabek JF (eds) Radiation curing in polymer science and technology – Vol I: fundamentals and methods. Elsevier Applied Science, London & New York, p P49

    Chapter  Google Scholar 

  15. Decker C, Elazouk B (1995) Laser curing of photopolymers. In: Allen NS et al (eds) Current trends in polymer photochemistry. Ellis Horwood, New York, p P130

    Google Scholar 

  16. Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26:605

    Article  Google Scholar 

  17. Hageman HJ (1989) Photoinitiators and photoinitiation mechanisms of free-radical polymerization processes. In: Allen NS (ed) Photopolymerization and photoimaging science and technology. Elsevier Science, London, p P1

    Chapter  Google Scholar 

  18. Crivello JV (1993) Latest developments in the chemistry of onium salts. In: Fouassier JP, Rabek JF (eds) Radiation curing in polymer science and technology – Vol II: photoinitiated systems. Elsevier Applied Science, London & New York, p P435

    Chapter  Google Scholar 

  19. Bassi GL (1993) Formulation of UV-curable coatings – how to design specific properties. In: Fouassier JP, Rabek JF (eds) Radiation curing in polymer science and technology – Vol II: photoinitiated systems. Elsevier Applied Science, London & New York, p P239

    Chapter  Google Scholar 

  20. Crivello JV (1984) Cationic polymerization ― iodonium and sulfonium salt photoinitiators. Adv Polym Sci 62:1

    Article  Google Scholar 

  21. Crivello JV, Lee JL (1988) Method for making polymeric photoactive aryl iodonium salts, products obtained therefrom, and use. General Electric Company, US Patent 4,780,511, 25 Oct 1988

    Google Scholar 

  22. Crivello JV, Lee JL (1989) Alkoxy-substituted diaryliodonium salt cationic photoinitiators. J Polym Sci Part A: Polym Chem 27:3951–3968

    Article  Google Scholar 

  23. Crivello JV, Lee JL (1990) Synthesis, characterization, and photoinitiated cationic polymerization of silicon-containing epoxy resins. J Polym Sci Part A: Polym Chem 28:479–503

    Google Scholar 

  24. Melisaris AP, Renyi W, Pang TH (2000) Liquid, radiation-curable composition, especially for producing flexible cured articles by stereolithography. Vantico Inc., US Patent 6,136,497, 24 Oct 2000

    Google Scholar 

  25. Pang TH, Melisaris AP, Renyi W, Fong JW (2000) Liquid radiation-curable composition especially for producing cured articles by stereolithography having high heat deflection temperatures. Ciba Specialty Chemicals Corp., US Patent 6,100,007, 8 Aug 2000

    Google Scholar 

  26. Steinmann B, Wolf JP, Schulthess A, Hunziker M (1995) Photosensitive compositions. Ciba-Geigy Corporation, US Patent 5,476,748, 19 Dec 1995

    Google Scholar 

  27. Steinmann B, Schulthess A (1999) Liquid, radiation-curable composition, especially for stereolithography. Ciba Specialty Chemicals Corp., US Patent 5,972,563, 26 Oct 1999

    Google Scholar 

  28. Crivello JV, Lee JL, Conlon DA (1983) Photoinitiated cationic polymerization with multifunctional vinyl ether monomers. J Radiat Curing 10(1):6–13

    Google Scholar 

  29. Decker C, Decker D (1994) Kinetic and mechanistic study of the UV-curing of vinyl ether based systems. Proc Rad Tech Conf, Orlando, vol I, p 602

    Google Scholar 

  30. Sperling LH (1981) Interpenetrating polymer networks and related materials. Plenum Press, New York

    Book  Google Scholar 

  31. Decker C, Viet TNT, Decker D, Weber-Koehl E (2001) UV-radiation curing of acrylate/epoxide systems. Polymer 42:5531–5541

    Article  Google Scholar 

  32. Sperling LH, Mishra V (1996) Polymer materials encyclopedia, vol 5. JC Salomone (ed). CRC Press, New York, p P3292

    Google Scholar 

  33. Chen M, Chen Q, Xiao S, Hong X (2001) Mechanism and application of hybrid UV curing system. Photogr Sci Photochem 19(3):208–216

    Google Scholar 

  34. Decker C (1996) Photoinitiated crosslinking polymerization. Prog Polym Sci 21:593–650

    Article  Google Scholar 

  35. Decker C, Xuan HL, Viet TNT (1996) Photocrosslinking of functionalized rubber. III. Polymerization of multifunctional monomers in epoxidized liquid natural rubber. J Polym Sci Part A: Polym Chem 34:1771–1781

    Article  Google Scholar 

  36. Perkins WC (1981) New developments in photo-induced cationic polymerization. J Radiat Curing 8(1):16

    Google Scholar 

  37. Renap K, Kruth JP (1995) Recoating issues in stereolithography. Rapid Prototyping Journal 1(3):4–16

    Article  Google Scholar 

  38. Lynn-Charney CM, Rosen DW (2000) Accuracy models and their use in stereolithography process planning. Rapid Prototyping J 6(2):77–86

    Article  Google Scholar 

  39. West AP (1999) A decision support system for fabrication process planning in stereolithography. Masters Thesis, Georgia Institute of Technology

    Google Scholar 

  40. 3D Systems web page: http://www.3dsystems.com

  41. 3D Systems, Inc. (1996) AccuMaxTM Toolkit User Guide, 3D Systems, Inc., Valencia, CA

    Google Scholar 

  42. Yi F, Wu J, Xian D (1993) LIGA technique for microstructure fabrication. Microfabrication Technol 4:1

    MATH  Google Scholar 

  43. Ikuta K, Hirowatari K (1993) Real three dimensional microfabrication using stereolithography and metal molding. Proc. IEEE MEMS, Fort Lauderdale, FL, pp 42–47, Feb 7–10

    Google Scholar 

  44. Suzumori K, Koga A, Haneda R (1994) Microfabrication of integrated FMA’s using stereo lithography. Proc. MEMS, Oiso, Japan, pp 136–141, Jan 25–28

    Google Scholar 

  45. Ikuta K, Hirowatari K, Ogata T (1994) Three dimensional micro integrated fluid systems fabricated by micro stereolithography. Proc. IEEE MEMS, Oiso, Japan, pp 1–6, Jan 25–28

    Google Scholar 

  46. Takagi T, Nakajima N (1994) Architecture combination by microphotoforming process. Proc. IEEE MEMS, pp 211–216

    Google Scholar 

  47. Ikuta K, Maruo S, Fujisawa T, Yamada A (1999) Micro concentrator with opto-sense micro reactor for biochemical IC chip family. Proc. MEMS, Orlando, FL pp 376–380, Jan 17–21

    Google Scholar 

  48. Gardner J, Varadan V, Awadelkarim O (2001) Microsensors MEMS and smart devices. Wiley, New York

    Book  Google Scholar 

  49. Ikuta K, Ogata T, Tsubio M, Kojima S (1996) Development of mass productive microsterolithography. Proc. MEMS, San Diego, pp 301–305, Feb 11–15

    Google Scholar 

  50. Ikuta K, Maruo S, Fujisawa T, Fukaya Y (1998) Chemical IC chip for dynamical control of protein synthesis. Proc Int Symp Micromechatronics and Human Science, Nagoya, Japan, pp 249–254, Nov 25–28

    Google Scholar 

  51. Dudley D, Duncan W, Slaughter J (2003) Emerging Digital Micromirror Device (DMD) applications. Proc. SPIE, Vol. 4985, San Jose, CA, pp 14–25, Jan 28–29

    Google Scholar 

  52. Bertsch A, Zissi S, Jezequel J, Corbel S, Andre J (1997) Microstereolithography using liquid crystal display as dynamic mask-generator. Microsyst Technol 3(2):42–47

    Article  Google Scholar 

  53. Monneret S, Loubere V, Corbel S (1999) Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proc SPIE 3680:553–561

    Article  Google Scholar 

  54. Chatwin C, Farsari M, Huang S, Heywood M, Birch P, Young R, Richardson J (1998) UV microstereolithography system that uses spatial light modulator technology. Appl Opt 37:7514–7522

    Article  Google Scholar 

  55. Bertsch A, Bernhard P, Vogt C, Renaud P (2000) Rapid prototyping of small size objects. Rapid Prototyping Journal 6(4):259–266

    Article  Google Scholar 

  56. Hadipoespito G, Yang Y, Choi H, Ning G, Li X (2003) Digital Micromirror device based microstereolithography for micro structures of transparent photopolymer and nanocomposites. Proceedings of the 14th Solid Freeform Fabrication Symposium, Austin TX, pp 13–24

    Google Scholar 

  57. Limaye A, Rosen DW (2004) Quantifying dimensional accuracy of a mask projection micro stereolithography system. Proc. Solid Freeform Fabrication Symposium, Austin, TX, Aug 2–4

    Google Scholar 

  58. Sun C, Fang N, Wu D, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators A 121:113–120

    Article  Google Scholar 

  59. Varadan VK, Jiang S, Varadan VV (2001) Microstereolithography and other fabrication techniques for 3D MEMS. Wiley, Chichester

    Google Scholar 

  60. V-Flash Modeler, www.modelin3d.com

  61. Limaye A, Rosen DW (2006) Compensation zone approach to avoid Z errors in Mask Projection Stereolithography builds. Rapid Prototyping J 12(5):283–291

    Article  Google Scholar 

  62. Swanson WK, Kremer SD (1975) Three dimensional systems. US Patent 4078229, filed 27 Jan 1975

    Google Scholar 

  63. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22(2):132–134

    Article  Google Scholar 

  64. Kawata S, Sun H, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698

    Article  Google Scholar 

  65. Miwa M, Juodkazis S, Kawakami T, Matsuo S, Misawa H (2001) Femtosecond two-photon stereolithography. Applied Physics A 73:561–566

    Article  Google Scholar 

  66. Sun H, Kawakami T, Xu Y, Ye J, Matsuo S, Misawa H, Miwa M, Kaneko R (2000) Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt Lett 25(15):1110–1112

    Article  Google Scholar 

  67. Albota M (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656

    Article  Google Scholar 

  68. Cumpston B, Ananthavel S, Barlow S, Dyer D, Ehrlich J, Erskine L, Heikal A, Kuebler S, Lee I, Mc-Cord Maughon D, Qin J, Rockel H, Rumi M, Wu X, Marder S, Perry J (1999) Two photon polymerization for three dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gibson, I., Rosen, D., Stucker, B. (2010). Photopolymerization Processes. In: Additive Manufacturing Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1120-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1120-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1119-3

  • Online ISBN: 978-1-4419-1120-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics