Rho Proteins in Cancer

  • Devin T. Rosenthal
  • John Chadwick Brenner
  • Sofia D. Merajver


From the earliest stages of embryonic development through the metastatic spread of cancer cells, cell motility is a critical feature of life. The Ras homology, or Rho, family of small GTPases plays a broad and essential role in all stages of cell motility. Rac and Cdc42 remodel the actin cytoskeleton at the leading edge of the cell, resulting in membrane ruffles and protrusions, while Rho is largely responsible for orchestrating focal adhesion assembly and generating contractile forces at the rear of the cell, thus permitting cell movement across these adhesive contacts and subsequent detachment by the trailing end of the cell. Activation and inactivation of these small GTPases is modulated by a group of regulatory proteins - guanine nucleotide exchange factors (GEFs) activate, while GTPase activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs) inhibit GTPase activity. Rho family proteins do not typically directly exert their effects on cell motility, but instead operate through a multitude of effector proteins, which each carry out a subset of motility-related functions. Because of their crucial roles in cell motility, Rho family protein expression and activation is altered in almost all types of cancer. As the body of knowledge surrounding Rho proteins, their interactions, and their regulation grows, so do the options for therapeutic intervention at an essential point of metastatic dissemination.


Guanine Nucleotide Exchange Factor Pleckstrin Homology Domain CAAX Motif Focal Adhesion Assembly Actin Stress Fiber Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Burroughs Wellcome Fund, the Breast Cancer Research Foundation, the Department of Defense Breast Cancer Research Program (BC083217 and BC083262), and the National Institutes of Health (CA-77612).


  1. Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P. A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 1998 Apr 6;141(1):187–97.PubMedCrossRefGoogle Scholar
  2. Li X, Bu X, Lu B, Avraham H, Flavell RA, Lim B. The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 2002 Feb;22(4):1158–71.PubMedCrossRefGoogle Scholar
  3. Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J, Settleman J. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 1996 Jun;16(6):2689–99.PubMedGoogle Scholar
  4. Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, et al. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol 2003 Jul 1;13(13):1106–15.PubMedCrossRefGoogle Scholar
  5. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992;70(3):389–99.PubMedCrossRefGoogle Scholar
  6. Ridley AJ, Paterson H, Johnston C, Diekman D., Hall A. The small GTP-binding protein rac regulates growth-factor induced membrane ruffling. Cell 1992;70(3):401–10.PubMedCrossRefGoogle Scholar
  7. Chimini G, Chavrier P. Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2000 Oct;2(10):E191-E196.PubMedCrossRefGoogle Scholar
  8. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002 Dec 12;420(6916):629–35.PubMedCrossRefGoogle Scholar
  9. Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, van der Kammen RA, et al. Rho family proteins in cell adhesion and cell migration. Eur J Cancer 2000 Jun;36(10):1269–74.PubMedCrossRefGoogle Scholar
  10. Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol 2004 Jan 1;265(1):23–32.PubMedCrossRefGoogle Scholar
  11. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991 Jan 10;349(6305):117–27.PubMedCrossRefGoogle Scholar
  12. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000 Jun 1;348 Pt 2:241–55.PubMedCrossRefGoogle Scholar
  13. Repasky GA, Chenette EJ, Der CJ. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 2004 Nov;14(11):639–47.PubMedCrossRefGoogle Scholar
  14. Olofsson B. Rho guanine dissociation inhibitors: Pivotal molecules in cellular signalling. Cell Signal 1999 Aug;11(8):545–54.PubMedCrossRefGoogle Scholar
  15. Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol 2004 Aug;16(4):451–7.PubMedCrossRefGoogle Scholar
  16. Michaelson D, Silletti J, Murphy G, D’Eustachio P, Rush M, Philips MR. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 2001 Jan 8;152(1):111–26.PubMedCrossRefGoogle Scholar
  17. Dvorsky R, Ahmadian MR. Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep 2004 Dec;5(12):1130–6.PubMedCrossRefGoogle Scholar
  18. Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006 Oct;16(10):522–9.PubMedCrossRefGoogle Scholar
  19. Dong JM, Leung T, Manser E, Lim L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J Biol Chem 1998 Aug 28;273(35):22554–62.PubMedCrossRefGoogle Scholar
  20. Forget MA, Desrosiers RR, Gingras D, Beliveau R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem J 2002 Jan 15;361(Pt 2):243–54.PubMedCrossRefGoogle Scholar
  21. Eva A, Vecchio G, Rao CD, Tronick SR, Aaronson SA. The predicted DBL oncogene product defines a distinct class of transforming proteins. Proc Natl Acad Sci U S A 1988 Apr;85(7):2061–5.PubMedCrossRefGoogle Scholar
  22. Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 1991 Nov 28;354(6351):311–4.PubMedCrossRefGoogle Scholar
  23. Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 2002 Jul 1;16(13):1587–609.PubMedCrossRefGoogle Scholar
  24. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005 Feb;6(2):167–80.PubMedCrossRefGoogle Scholar
  25. Sekimata M, Kabuyama Y, Emori Y, Homma Y. Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. J Biol Chem 1999 Jun 18;274(25):17757–62.PubMedCrossRefGoogle Scholar
  26. Taylor JM, Macklem MM, Parsons JT. Cytoskeletal changes induced by GRAF, the GTPase regulator associated with focal adhesion kinase, are mediated by Rho. J Cell Sci 1999 Jan;112 (Pt 2):231–42.PubMedGoogle Scholar
  27. Roof RW, Haskell MD, Dukes BD, Sherman N, Kinter M, Parsons SJ. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP-p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c- Src, is the sole p-Tyr mediator of complex formation. Mol Cell Biol 1998 Dec;18(12):7052–63.PubMedGoogle Scholar
  28. Brouns MR, Matheson SF, Hu KQ, Delalle I, Caviness VS, Silver J, et al. The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 2000 Nov;127(22):4891–903.PubMedGoogle Scholar
  29. Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, et al. Bcr encodes a GTPase-activating protein for p21rac. Nature 1991 May 30;351(6325):400–2.PubMedCrossRefGoogle Scholar
  30. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973 Jun 1;243(5405):290–3.PubMedCrossRefGoogle Scholar
  31. Zheng X, Guller S, Beissert T, Puccetti E, Ruthardt M. BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility. BMC Cancer 2006;6:262.PubMedCrossRefGoogle Scholar
  32. Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, Kato T, Narumiya S. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat Cell Biol 2001 Jan;3(1):8–14.PubMedCrossRefGoogle Scholar
  33. Zohar M, Teramoto H, Katz BZ, Yamada KM, Gutkind JS. Effector domain mutants of Rho dissociate cytoskeletal changes from nuclear signaling and cellular transformation. Oncogene 1998 Aug 27;17(8):991–8.PubMedCrossRefGoogle Scholar
  34. Maesaki R, Ihara K, Shimizu T, Kuroda S, Kaibuchi K, Hakoshima T. The structural basis of Rho effector recognition revealed by the crystal structure of human RhoA complexed with the effector domain of PKN/PRK1. Mol Cell 1999 Nov;4(5):793–803.PubMedCrossRefGoogle Scholar
  35. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 1995;81(1):53–62.PubMedCrossRefGoogle Scholar
  36. Sepp KJ, Auld VJ. RhoA and Rac1 GTPases mediate the dynamic rearrangement of actin in peripheral glia. Development 2003 May;130(9):1825–35.PubMedCrossRefGoogle Scholar
  37. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 1999 Apr 16;97(2):221–31.PubMedCrossRefGoogle Scholar
  38. Weaver AM, Young ME, Lee WL, Cooper JA. Integration of signals to the Arp2/3 complex. Curr Opin Cell Biol 2003 Feb;15(1):23–30.PubMedCrossRefGoogle Scholar
  39. Blanchoin L, Pollard TD, Mullins RD. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr Biol 2000 Oct 19;10(20):1273–82.PubMedCrossRefGoogle Scholar
  40. Yang C, Huang M, DeBiasio J, Pring M, Joyce M, Miki H, et al. Profilin enhances Cdc42-induced nucleation of actin polymerization. J Cell Biol 2000 Sep 4;150(5):1001–12.PubMedCrossRefGoogle Scholar
  41. Nishiya N, Kiosses WB, Han J, Ginsberg MH. An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol 2005 Apr;7(4):343–52.PubMedCrossRefGoogle Scholar
  42. Lim CJ, Han J, Yousefi N, Ma Y, Amieux PS, McKnight GS, et al. Alpha4 integrins are type I cAMP-dependent protein kinase-anchoring proteins. Nat Cell Biol 2007 Apr;9(4):415–21.PubMedCrossRefGoogle Scholar
  43. Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, et al. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 1997 Mar 10;404(2–3):118–24.PubMedCrossRefGoogle Scholar
  44. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, et al. Signaling from Rho to the actin cytoskeleton through protein kinases and LIM-kinase. Science 1999;285(5429):895–8.PubMedCrossRefGoogle Scholar
  45. Sumi T, Matsumoto K, Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 2001 Jan 5;276(1):670–6.PubMedCrossRefGoogle Scholar
  46. Mitchison TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996 Feb 9;84(3):371–9.PubMedCrossRefGoogle Scholar
  47. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 2003 Jul;9(7):2632–41.PubMedGoogle Scholar
  48. Pervaiz S, Cao J, Chao OS, Chin YY, Clement MV. Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene 2001 Sep 27;20(43):6263–8.PubMedCrossRefGoogle Scholar
  49. Wu F, Chen Y, Li Y, Ju J, Wang Z, Yan D. RNA-interference-mediated Cdc42 silencing down-regulates phosphorylation of STAT3 and suppresses growth in human bladder-cancer cells. Biotechnol Appl Biochem 2008 Feb;49(Pt 2):121–8.PubMedCrossRefGoogle Scholar
  50. Knowles MA, Aveyard JS, Taylor CF, Harnden P, Bass S. Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett 2005 Jul 8;225(1):121–30.PubMedCrossRefGoogle Scholar
  51. Bourguignon LY, Zhu H, Shao L, Zhu D, Chen YW. Rho-kinase (ROK) promotes CD44v(3,8–10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells. Cell Motil Cytoskeleton 1999;43(4):269–87.PubMedCrossRefGoogle Scholar
  52. de CP, Gauville C, Closson V, Linares G, Calvo F, Tavitian A, et al. EGF modulation of the ras-related rhoB gene expression in human breast-cancer cell lines. Int J Cancer 1994 Nov 1;59(3):408–15.CrossRefGoogle Scholar
  53. van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 1999 Sep;5(9):2511–9.PubMedGoogle Scholar
  54. Debily MA, Camarca A, Ciullo M, Mayer C, El MS, Ba I, et al. Expression and molecular characterization of alternative transcripts of the ARHGEF5/TIM oncogene specific for human breast cancer. Hum Mol Genet 2004 Feb 1;13(3):323–34.PubMedCrossRefGoogle Scholar
  55. Bourguignon LY, Zhu H, Shao L, Chen YW. Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration. J Cell Biol 2000 Jul 10;150(1):177–91.PubMedCrossRefGoogle Scholar
  56. Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A 2000 Jan 4;97(1):185–9.PubMedCrossRefGoogle Scholar
  57. Hirsch DS, Shen Y, Wu WJ. Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42. Cancer Res 2006 Apr 1;66(7):3523–30.PubMedCrossRefGoogle Scholar
  58. Hamaguchi M, Meth JL, von KC, Wei W, Esposito D, Rodgers L, et al. DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci U S A 2002 Oct 15;99(21):13647–52.PubMedCrossRefGoogle Scholar
  59. Kirikoshi H, Katoh M. Expression of WRCH1 in human cancer and down-regulation of WRCH1 by beta-estradiol in MCF-7 cells. Int J Oncol 2002 Apr;20(4):777–83.PubMedGoogle Scholar
  60. Hamadmad SN, Hohl RJ. Erythropoietin stimulates cancer cell migration and activates RhoA protein through a mitogen-activated protein kinase/extracellular signal-regulated kinase-dependent mechanism. J Pharmacol Exp Ther 2008 Mar;324(3):1227–33.PubMedCrossRefGoogle Scholar
  61. Chen Z, Sun J, Pradines A, Favre G, Adnane J, Sebti SM. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J Biol Chem 2000 Jun 16;275(24):17974–8.PubMedCrossRefGoogle Scholar
  62. Geiger T, Sabanay H, Kravchenko-Balasha N, Geiger B, Levitzki A. Anomalous features of EMT during keratinocyte transformation. PLoS ONE 2008;3(2):e1574.PubMedCrossRefGoogle Scholar
  63. Katoh M. Molecular cloning and characterization of WRCH2 on human chromosome 15q15. Int J Oncol 2002 May;20(5):977–82.PubMedGoogle Scholar
  64. Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer 1999 May 31;81(5):682–7.PubMedCrossRefGoogle Scholar
  65. Bellovin DI, Simpson KJ, Danilov T, Maynard E, Rimm DL, Oettgen P, et al. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene 2006 Nov 2;25(52):6959–67.PubMedCrossRefGoogle Scholar
  66. Akashi H, Han HJ, Iizaka M, Nakamura Y. Growth-suppressive effect of non-steroidal anti-inflammatory drugs on 11 colon-cancer cell lines and fluorescence differential display of genes whose expression is influenced by sulindac. Int J Cancer 2000 Dec 15;88(6):873–80.PubMedCrossRefGoogle Scholar
  67. Kim MH, Park JS, Chang HJ, Baek MK, Kim HR, Shin BA, et al. Lysophosphatidic acid promotes cell invasion by up-regulating the urokinase-type plasminogen activator receptor in human gastric cancer cells. J Cell Biochem 2008 Jun 1;104(3):1102–12.PubMedCrossRefGoogle Scholar
  68. Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K, Sakamoto H, et al. Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 2005 Mar 15;65(6):2115–24.PubMedCrossRefGoogle Scholar
  69. Liu N, Zhang G, Bi F, Pan Y, Xue Y, Shi Y, et al. RhoC is essential for the metastasis of gastric cancer. J Mol Med 2007 Oct;85(10):1149–56.PubMedCrossRefGoogle Scholar
  70. Xue Y, Bi F, Zhang X, Zhang S, Pan Y, Liu N, et al. Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. Int J Cancer 2006 Jun 15;118(12):2965–72.PubMedCrossRefGoogle Scholar
  71. Adnane J, Muro-Cacho C, Mathews L, Sebti SM, Munoz-Antonia T. Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin Cancer Res 2002 Jul;8(7):2225–32.PubMedGoogle Scholar
  72. Pan Q, Bao LW, Teknos TN, Merajver SD. Targeted Disruption of Protein Kinase C{varepsilon} Reduces Cell Invasion and Motility through Inactivation of RhoA and RhoC GTPases in Head and Neck Squamous Cell Carcinoma. Cancer Res 2006 Oct 1;66(19):9379–84.PubMedCrossRefGoogle Scholar
  73. Patel V, Rosenfeldt HM, Lyons R, Servitja JM, Bustelo XR, Siroff M, et al. Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis 2007 Jun;28(6):1145–52.PubMedCrossRefGoogle Scholar
  74. Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, et al. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 2001 Jul;111(7):1285–9.PubMedCrossRefGoogle Scholar
  75. Beder LB, Gunduz M, Ouchida M, Gunduz E, Sakai A, Fukushima K, et al. Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer. J Cancer Res Clin Oncol 2006 Jan;132(1):19–27.PubMedCrossRefGoogle Scholar
  76. Wang D, Dou K, Xiang H, Song Z, Zhao Q, Chen Y, et al. Involvement of RhoA in progression of human hepatocellular carcinoma. J Gastroenterol Hepatol 2007 Nov;22(11):1916–20.PubMedCrossRefGoogle Scholar
  77. Wang W, Yang LY, Huang GW, Lu WQ. Expression and significance of RhoC gene in hepatocellular carcinoma. World Journal of Gastroenterology 2003;9(9):1950–3.PubMedGoogle Scholar
  78. Ching YP, Leong VY, Lee MF, Xu HT, Jin DY, Ng IO. P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 2007 Apr 15;67(8):3601–8.PubMedCrossRefGoogle Scholar
  79. Chang CS, Huang SM, Lin HH, Wu CC, Wang CJ. Different expression of apoptotic proteins between HBV-infected and non-HBV-infected hepatocellular carcinoma. Hepatogastroenterology 2007 Oct;54(79):2061–8.PubMedGoogle Scholar
  80. Reuther GW, Lambert QT, Booden MA, Wennerberg K, Becknell B, Marcucci G, et al. Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. J Biol Chem 2001 Jul 20;276(29):27145–51.PubMedCrossRefGoogle Scholar
  81. Nishihara H, Maeda M, Oda A, Tsuda M, Sawa H, Nagashima K, et al. DOCK2 associates with CrkL and regulates Rac1 in human leukemia cell lines. Blood 2002 Dec 1;100(12):3968–74.PubMedCrossRefGoogle Scholar
  82. Munugalavadla V, Sims EC, Borneo J, Chan RJ, Kapur R. Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis. Blood 2007 Sep 1;110(5):1612–20.PubMedCrossRefGoogle Scholar
  83. Cho YJ, Zhang B, Kaartinen V, Haataja L, de C, I, Groffen J, et al. Generation of rac3 null mutant mice: role of Rac3 in Bcr/Abl-caused lymphoblastic leukemia. Mol Cell Biol 2005 Jul;25(13):5777–85.PubMedCrossRefGoogle Scholar
  84. Harnois T, Constantin B, Rioux A, Grenioux E, Kitzis A, Bourmeyster N. Differential interaction and activation of Rho family GTPases by p210bcr-abl and p190bcr-abl. Oncogene 2003;22(41):6445–54.PubMedCrossRefGoogle Scholar
  85. Rossi D, Berra E, Cerri M, Deambrogi C, Barbieri C, Franceschetti S, et al. Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma. Haematologica 2006 Oct;91(10):1405–9.PubMedGoogle Scholar
  86. Wang S, Yan-Neale Y, Fischer D, Zeremski M, Cai R, Zhu J, et al. Histone deacetylase 1 represses the small GTPase RhoB expression in human nonsmall lung carcinoma cell line. Oncogene 2003 Sep 18;22(40):6204–13.PubMedCrossRefGoogle Scholar
  87. Cuiyan Z, Jie H, Fang Z, Kezhi Z, Junting W, Susheng S, et al. Overexpression of RhoE in Non-small Cell Lung Cancer (NSCLC) is associated with smoking and correlates with DNA copy number changes. Cancer Biol Ther 2007 Mar;6(3):335–42.PubMedCrossRefGoogle Scholar
  88. Wilkins A, Ping Q, Carpenter CL. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev 2004 Apr 15;18(8):856–61.PubMedCrossRefGoogle Scholar
  89. Stam JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG. Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 1998 Jul 15;17(14):4066–74.PubMedCrossRefGoogle Scholar
  90. Kari L, Loboda A, Nebozhyn M, Rook AH, Vonderheid EC, Nichols C, et al. Classification and prediction of survival in patients with the leukemic phase of cutaneous T cell lymphoma. J Exp Med 2003 Jun 2;197(11):1477–88.PubMedCrossRefGoogle Scholar
  91. Schwering I, Brauninger A, Distler V, Jesdinsky J, Diehl V, Hansmann ML, et al. Profiling of Hodgkin’s lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin’s lymphoma-specific genes. Mol Med 2003 Mar;9(3–4):85–95.PubMedGoogle Scholar
  92. Zhang B, Zhang Y, Shacter E. Rac1 inhibits apoptosis in human lymphoma cells by stimulating Bad phosphorylation on Ser-75. Mol Cell Biol 2004 Jul;24(14):6205–14.PubMedCrossRefGoogle Scholar
  93. Dallery E, Galiegue-Zouitina S, Collyn-d’Hooghe M, Quief S, Denis C, Hildebrand MP, et al. TTF, a gene encoding a novel small G protein, fuses to the lymphoma-associated LAZ3 gene by t(3;4) chromosomal translocation. Oncogene 1995 Jun 1;10(11):2171–8.PubMedGoogle Scholar
  94. Robledo MM, Bartolome RA, Longo N, Rodriguez-Frade JM, Mellado M, Longo I, et al. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem 2001 Nov 30;276(48):45098–105.PubMedCrossRefGoogle Scholar
  95. Jiang K, Sun J, Cheng J, Djeu JY, Wei S, Sebti S. Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Mol Cell Biol 2004 Jun;24(12):5565–76.PubMedCrossRefGoogle Scholar
  96. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000 Aug 3;406(6795):532–5.PubMedCrossRefGoogle Scholar
  97. Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, et al. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol 1999 Dec;1(8):507–13.PubMedCrossRefGoogle Scholar
  98. Pinner S, Sahai E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 2008 Feb;10(2):127–37.PubMedCrossRefGoogle Scholar
  99. Khyrul WA, LaLonde DP, Brown MC, Levinson H, Turner CE. The integrin-linked kinase regulates cell morphology and motility in a rho-associated kinase-dependent manner. J Biol Chem 2004 Dec 24;279(52):54131–9.PubMedCrossRefGoogle Scholar
  100. Horii Y, Beeler JF, Sakaguchi K, Tachibana M, Miki T. A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J 1994 Oct 17;13(20):4776–86.PubMedGoogle Scholar
  101. Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, et al. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest 2003 Jun;83(6):861–70.PubMedGoogle Scholar
  102. Bourguignon LY, Gilad E, Rothman K, Peyrollier K. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 2005 Mar 25;280(12):11961–72.PubMedCrossRefGoogle Scholar
  103. Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, et al. Inhibition of epidermal growth factor-induced RhoA translocation and invasion of human pancreatic cancer cells by 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors. Cancer Res 2001 Jun 15;61(12):4885–91.PubMedGoogle Scholar
  104. Suwa H, Ohshio G, Imamura T, Watanabe G, Arii S, Imamura M, et al. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer 1998;77(1):147–52.PubMedGoogle Scholar
  105. Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R, et al. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 2005 Jan;7(1):39–49.PubMedCrossRefGoogle Scholar
  106. Taniuchi K, Nakagawa H, Hosokawa M, Nakamura T, Eguchi H, Ohigashi H, et al. Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Res 2005 Apr 15;65(8):3092–9.PubMedGoogle Scholar
  107. Nie D, Guo Y, Yang D, Tang Y, Chen Y, Wang MT, et al. Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho. Cancer Res 2008 Jan 1;68(1):115–21.PubMedCrossRefGoogle Scholar
  108. Yao H, Dashner EJ, van Golen CM, van Golen KL. RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility. Oncogene 2005 Nov 28.Google Scholar
  109. Knight-Krajewski S, Welsh CF, Liu Y, Lyons LS, Faysal JM, Yang ES, et al. Deregulation of the Rho GTPase, Rac1, suppresses cyclin-dependent kinase inhibitor p21(CIP1) levels in androgen-independent human prostate cancer cells. Oncogene 2004 Jul 15;23(32):5513–22.PubMedCrossRefGoogle Scholar
  110. Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer 2001 Dec 14;85(12):1928–36.PubMedCrossRefGoogle Scholar
  111. Black PC, Mize GJ, Karlin P, Greenberg DL, Hawley SJ, True LD, et al. Overexpression of protease-activated receptors-1,-2, and-4 (PAR-1, -2, and -4) in prostate cancer. Prostate 2007 May 15;67(7):743–56.PubMedCrossRefGoogle Scholar
  112. Bektic J, Pfeil K, Berger AP, Ramoner R, Pelzer A, Schafer G, et al. Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis. Prostate 2005 Sep 1;64(4):332–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Devin T. Rosenthal
    • 1
  • John Chadwick Brenner
    • 1
  • Sofia D. Merajver
    • 1
  1. 1.Department of Internal Medicine and Comprehensive Cancer CenterUniversity of MichiganAnn ArborUSA

Personalised recommendations