Tuberculosis and BCG

  • Marina Gheorghiu
  • Micheline Lagranderie
  • Anne-Marie Balazuc


Tuberculosis occurred in humans probably as early as 8,000 bc in its sporadic form. Indeed, it is mentioned in India’s Vedas, the most sacred texts of Hinduism, and later by Hippocrates, Celse D’Aretée de Cappadoce (170 bc), and Avicene (Calmette 1923; Calmette et al. 1928). Recently, genetic studies of the tubercle bacillus have found its progenitor to come into existence possibly as early as 35,000 bc (Gutierrez et al. 2005). Tuberculosis became an epidemic problem once humans settled and crowded into permanent, food-producing social networks. Thus, Egyptian mummies from the Rhamses period (3,000 bc) showed spinal deformities consistent with tuberculosis – Pott’s disease. Hippocrates used the term “phthisis,” the Greek term for “consumption,” to describe the wasting away experienced by individuals with tuberculosis. Swollen cervical lymph nodes were known as “scrofula” or the “King’s Evil” in England (Artenstein et al. 1995). The belief that they could be healed by the King’s touch, although coincidentally true in some cases, likely had more to do with host immune responses than regal intervention.


Pasteur Institute Oral Vaccination Extra Pulmonary Tuberculosis Smallpox Vaccine Miliary Tuberculosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abou-Zeid CI, Smith J, Grange J et al (1986) Subdivision of daughter strains of Bacille Calmette-Guérin (BCG) according to secreted protein patterns. J Gen Microbiol 132:3047–3053PubMedGoogle Scholar
  2. Aronson JD, Santoshan M, Comstock GW et al (2004) Long-term efficacy of BCG vaccine in American Indians and Alaska natives: a 60-year follow-up study. JAMA 291:2068–2091CrossRefGoogle Scholar
  3. Artenstein AW (2008) New generation smallpox vaccines: a review of preclinical and clinical data. Rev Med Virol 18(4):225–235CrossRefGoogle Scholar
  4. Artenstein AW, Kim JH, Williams WJ et al (1995) Isolated peripheral tuberculous lymphadenitis in adults: current clinical and diagnostic issues. Clin Infect Dis 20:876–882PubMedGoogle Scholar
  5. Barklay WR, Buzey WM, Balgard DW et al (1973) Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guérin. Am Rev Respir Dis 107:351–358Google Scholar
  6. Baumann S, Eddine AM, Kaufmann SHE (2006) Progress in tuberculosis vaccine development. Curr Opin Immunol 18:1–11CrossRefGoogle Scholar
  7. Behr MA, Small PM (1999) A historical and molecular phylogeny of BCG strains. Vaccine 17:915–922CrossRefPubMedGoogle Scholar
  8. Bernard JML (1931) Le drame de Lübeck. Bull Acad Nat Méd 106:673–682Google Scholar
  9. Bloom BR, Fine PE (1994) The BCG experience: implication for future vaccines against tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis protection and control. ASM Press, Washington, DCGoogle Scholar
  10. Bonah C (2005) The ‘experimental stable’ of the BCG vaccine: safety, efficacy, proof, and standards, 1921–1933. Stud Hist Phil Biol Biomed Sci 36:696–721Google Scholar
  11. Brewer TF, Colditz GA (1995) Relationship between Bacille Calmette-Guérin (BCG) strains and the efficacy of BCG Vaccine in the prevention of tuberculosis. Clin Infect Dis 20:126–135PubMedGoogle Scholar
  12. Brock TD (1999) Robert Koch: a life in medicine and bateriology. ASM Press, Washington, DCGoogle Scholar
  13. Burke DS (1993) Of postulates and peccadilloes: Robert Koch and vaccine (tuberculin) therapy for tuberculosis. Vaccine 11(8):795–804CrossRefPubMedGoogle Scholar
  14. Bynum WF (1994) Science and the practice of medicine in the ninetheenth century. Cambridge University Press, New YorkGoogle Scholar
  15. Calmette A (1923) Tubercle bacillus infection and tuberculosis in man and animals. Processes of infection and resistance. (trans: Smith GH, Soper WB). Williams and Wilkins Co, BaltimoreGoogle Scholar
  16. Calmette A, Bocquet A, Nègre L (1921) Contribution a l’étude du bacille tuberculeux bilié. Ann Inst Pasteur 9:561–570Google Scholar
  17. Calmette A, Bocquet A, Nègre L (1926) Prémunition des nouveaux-nés contre la tuberculose par le vaccin BCG (1921–1926). Ann Institut Pasteur XL:89–120Google Scholar
  18. Calmette A, Bocquet A, Nègre L (1928) L’infection bacillaire et la tuberculose chez l’homme et chez les animaux. In: Calmette A et al (eds) Vaccination préventive. Masson et Cie, ParisGoogle Scholar
  19. Chung KT, Biggers CJ (2001) Albert Léon Charles Calmette (1863–1933) and the antituberculous BCG vaccination. Perspect Biol Med 44(3):349–389CrossRefGoogle Scholar
  20. Clemens JD, Jackie JH, Chuong JH et al (1983) The BCG controversy, methodological and statistical reappraisal. JAMA 249:2362–2369CrossRefPubMedGoogle Scholar
  21. Cohn ML, Davies CL, Middlebrook G (1958) Airborne immunization against tuberculosis. Science 128:1282–1283CrossRefPubMedGoogle Scholar
  22. Colditz GA, Brewer TF, Berkey CS et al (1994) Efficacy of BCG Vaccine in the prevention of tuberculosis: meta-analysis of the published literature. JAMA 271:698–702CrossRefPubMedGoogle Scholar
  23. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 395:537–544Google Scholar
  24. Comstock GW (1964) Community research in tuberculosis Muscogee County Georgia. Public Health Rep 79:1045–1056PubMedGoogle Scholar
  25. Comstock GW, Woolpert SF, Livesay VT et al (1976) Tuberculosis studies in Muscogee County, Georgia: twenty-year evaluation of a community trial of BCG vaccination. Public Health Rep 91:276–280PubMedGoogle Scholar
  26. Corbel MJ, Fruth U, Griffiths E et al (2004) Report on WHO Consultation on the charac­terisation of BCG strains, Imperial College, London 15–16 December 2003. Vaccine 22(21–22):2675–2680CrossRefPubMedGoogle Scholar
  27. Daniel TM (2004) The impact of tuberculosis on civilization. Infect Dis Clin N Am 18:157–165CrossRefGoogle Scholar
  28. Daniel TM, Bates JH, Downes KA et al (1994) History of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection and control. ASM Press, Washington, DCGoogle Scholar
  29. Dubos R, Dubos J (1952) Tuberculosis, man and society: the white plague. Little, Brown and Co, BostonGoogle Scholar
  30. Dubos RJ, Pierce CH (1956) Differential characteristics in vitro and in vivo of several substrains of BCG. Am Rev Tuberc 74:655–717PubMedGoogle Scholar
  31. Fomukong NG, Dale JW, Osborn TW et al (1992) Use of gene probes based on the insertion sequence IS986 differentiate between BCG vaccine strains. J Appl Bacteriol 72:126–133PubMedGoogle Scholar
  32. Gelinas JA (1973) Albert Calmette. The Saigon years 1891–1893: a historical review. Mil Med 138(11):730–733PubMedGoogle Scholar
  33. Gheorghiu M (1994) BCG induced mucosal immune responses. Int J Immunopharmacol 16:435–444CrossRefPubMedGoogle Scholar
  34. Gheorghiu M (1996) Antituberculosis BCG vaccine: lessons from the past. In: Plotkins S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner, Pasteur and their successors 87–94. Elsevier, ParisGoogle Scholar
  35. Gheorghiu M, Lagrange PH (1983) Viability, heat stability and immunogenicity of four BCG vaccines prepared from four different BCG strain. Ann Immunol (Inst Pasteur) 134C:125–147CrossRefGoogle Scholar
  36. Gheorghiu M, Augier J, Lagrange PH et al (1983) Maintenance and control of the French BCG strain 1173 P2 (primary and secondary seed-lots). Bull Inst Pasteur 81:281–288Google Scholar
  37. Gheorghiu M, Lagranderie M, Balazuc AM et al (1998) Cytotoxic activity induced by Mycobacterium bovis BCG. Dev Biol Stand Basel 92:199–208Google Scholar
  38. Ginsberg AM (2002) What’s new in tuberculosis vaccines. Bull WHO 6:483–488Google Scholar
  39. Grange JM, Biship PJ (1982) ‘Uber tuberkulose’. A tribute to Robert Koch’s discovery of the tubercle bacillus, 1882. Tubercle 63(1):3–17CrossRefPubMedGoogle Scholar
  40. Gros P, Skamene E, Forget A et al (1981) Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 127:2417–2421PubMedGoogle Scholar
  41. Guérin C (1948) Le BCG et la prévention de la tuberculose. Rev Atomes 27:183–188Google Scholar
  42. Gutierrez MC, Brosse S, Brosch R et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5CrossRefPubMedGoogle Scholar
  43. Hawgood BJ (2007) Albert Calmette (1863–1933) and Camille Guérin (1872–1961): the C and G of BCG vaccine. J Med Biogr 15:139–146PubMedGoogle Scholar
  44. Huygen K, Content J, Denis O et al (1996) Immunogenicity and protective efficacy of tuberculosis DNA vaccine. Nat Med 2:893–898CrossRefPubMedGoogle Scholar
  45. Kaufmann SHE, McMichael AJ (2005) Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nat Med Suppl 11(4):533–544CrossRefGoogle Scholar
  46. Koch R (1882) Die Ätiology der Tuberculose Berliner Klin. Wochenschrift 19:221–230Google Scholar
  47. Laennec T (1928) Traité de l’auscultation médiate et de maladies du poumon et du coeur In: Calmette A, Boquet A, Nègre L (eds) L’Infection bacillaire et la tuberculose chez l’homme et chez les animaux. Masson et Cie, ParisGoogle Scholar
  48. Lagranderie M, Frehel C, deChastellier C et al (1991) Cellular oxidative responses and mycobacterial growth inhibition in aerosol and intradermal BCG-immunized guinea-pigs. Biologicals 19:335–345CrossRefPubMedGoogle Scholar
  49. Lagranderie M, Ravisse P, Marchal G et al (1993) BCG induced protection in guinea-pigs vaccinated and challenged via the respiratory route. Tuber Lung Dis 74:38–46CrossRefPubMedGoogle Scholar
  50. Lagranderie M, Balazue AM, Gicquel B et al (1997) Oral immunization with recombinant Mycobacterium bovis BCG simian immunodeficiency virus nef induces local and systemic cytotoxic T-lymphocyte responses in mice. J Virol 71:2303–2309PubMedGoogle Scholar
  51. Lange B (1931) Nouvelles recherches sur les causes des accidents de Lübeck. Rev Tuberc Extrait XII:1142–1170Google Scholar
  52. Lotte A, Wasz-Hockert O, Poisson N et al (1984) BCG complications. Estimates of the risk among vaccinated subjects and statistical analysis of their main characteristics. Adv Tuberc Res 21:107–193PubMedGoogle Scholar
  53. Minnikin DE, Minnikin SM, Dobson G et al (1983) Mycolic acid patterns of four vaccine strains of Mycobacterium bovis BCG. J Gen Microbiol 129:889–891PubMedGoogle Scholar
  54. Mostowy S, Tsolaki AG, Small PM et al (2003) The in vitro, evolution of BCG vaccines. Vaccine 21:4270–4274CrossRefPubMedGoogle Scholar
  55. Murray JF (2004) Mycobacterium tuberculosis and the cause of consumption: from discovery to fact. Am J Respir Crit Care Med 169:1086–1088CrossRefPubMedGoogle Scholar
  56. Orme IM (2005) Current progress in Tuberculosis vaccine development. Vaccine 23(17–18):2105–2108CrossRefPubMedGoogle Scholar
  57. Orme IM (2006) Preclinical testing of new vaccines for tuberculosis. A comprehensive review. Vaccine 24:2–19CrossRefPubMedGoogle Scholar
  58. Orme JM, Collins FM (1984) Adoptive protection of the mycobacterium tuberculosis-infected lung: dissociation between cells that passively transfer protective immunity and those that transfer delayed-type hypersensitivity. Cell Immunol 84:113–120CrossRefPubMedGoogle Scholar
  59. Osborn TW (1983) Changes in BCG strains. Tubercle 64:1–13CrossRefPubMedGoogle Scholar
  60. Pasteur L (1880) de l’atténuation du virus du choléra des poules. CR Acad Sci 91:673–680Google Scholar
  61. Pasteur L, Chamberland C, Roux E (1881) Le vaccin du charbon. CR Acad Sci 92:666–668Google Scholar
  62. Pym AS, Brodin P, Brosch R et al (2002) Loss of RD1 contributed to the attenuation of live tuberculosis vaccines mycobacterium bovis BCG and mycobacterium microti. Mol Microbiol 46:709–717CrossRefPubMedGoogle Scholar
  63. Rosenthal SR (1980) Routes and methods of administration. In: Rosenthal SR (ed) BCG vaccine tuberculosis-cancer. PSG Publishing Co Inc, Littleton, MAGoogle Scholar
  64. Sakula A (1983) BCG: who were Calmette and Guérin? Thorax 38:806–812CrossRefPubMedGoogle Scholar
  65. Sekhuis VM, Freudenstein H, Sirks JL et al (1977) Report on results of a collaborative assay of BCG vaccines organized by IABS. J Biol Standard 5:85–109CrossRefGoogle Scholar
  66. Smith D, Harding GE, Chan JK et al (1979) Potency of 10 BCG vaccines evaluated by their influence on bacillemic phase of experimental airborne tuberculosis in guinea-pigs. J Biol Standard 7:179–197CrossRefGoogle Scholar
  67. Société des Nations (CH745) (1928) Organisation d’hygiène rapport de la conférence technique pour l’étude de la vaccination antituberculeuse par le BCG. Institut Pasteur Paris-GenèveGoogle Scholar
  68. Springett VH, Sutherland J (1970) Comparison of the efficacy of liquid and freeze dried strains of BCG Vaccine in preventing tuberculosis. Br Med J 4:148–150CrossRefPubMedGoogle Scholar
  69. Stead WW (1996) Epidemiology of the global distribution of tuberculosis. In: Koprowski H, Oldstone MBA (eds) Microbe hunters: then and now. Medi-Ed Press, Bloomington, ILGoogle Scholar
  70. ten Dam HG (1993) BCG vaccination In: Reichmann LB, Hershfield ES (eds) Tuberculosis: a comprehensive international approach, 1st edn. Marcel Dekker, New YorkGoogle Scholar
  71. Wallgren A (1928) Intradermal vaccination with BCG virus. JAMA 91:1876–1881Google Scholar
  72. Weil-Hallé B, Turpin R (1925) Premiers essais de vaccination antituberculeuse de l’enfant par le bacille de Calmette-Guérin (BCG). Bull et mém Soc méd Hôp 49:1589–1601Google Scholar
  73. WHO (1997) EPI information system global summary. WHO/EPI/Gen/98.10Google Scholar
  74. WHO (1979) Tuberculosis prevention trials: Madras. Trial of BCG vaccines in South India for tuberculosis prenvention. Bull WHO 57:819–827Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marina Gheorghiu
    • 1
  • Micheline Lagranderie
    • 1
  • Anne-Marie Balazuc
    • 1
  1. 1.Institut Pasteur ParisParisFrance

Personalised recommendations