Human Papillomaviruses

  • Ian H. Frazer


Cervical cancer is one of the few human cancers entirely attributable to infection with a virus, human papillomavirus (HPV). It is one of the commonest cancers among women worldwide, responsible for over 250,000 deaths each year. Although chronic disease of the uterus was known in ancient times, the concept of cancer as a disorder of cell growth is relatively recent and was only confirmed with the advent of technologies for the microscopic examination of human tissue in the first half of the nineteenth century, as systematized by Virchow and others (Bracegirdle 1977).


Cervical Cancer Cervical Intraepithelial Neoplasia Genital Wart Recurrent Respiratory Papillomatosis Epidermodysplasia Verruciformis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alphs HH, Gambhira R, Karanam B et al (2008) Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. Proc Natl Acad Sci USA 105(15):5850–5855CrossRefPubMedGoogle Scholar
  2. Ault KA (2007) Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet 369(9576):1861–1868CrossRefPubMedGoogle Scholar
  3. Ault KA, Giuliano AR, Edwards RP et al (2004) A phase I study to evaluate a human papillomavirus (HPV) type 18 L1 VLP vaccine. Vaccine 22(23–24):3004–3007CrossRefPubMedGoogle Scholar
  4. Barbara A Slade, Laura Leidel, Claudia Vellozzi, Emily Jane Woo, Wei Hua, Andrea Sutherland, Hector S Izurieta, Robert Ball, Nancy Miller, M Miles Braun, Lauri E Markowitz John Iskander Postlicensure Safety Surveillance for Quadrivalent Human Papillomavirus Recombinant Vaccine JAMA. 2009;302(7):750–757Google Scholar
  5. Bell JA, Sundberg JP, Ghim S et al (1994) A formalin-inactivated vaccine protects against mucosal papillomavirus infection: a canine model. Pathobiology 62:194–198CrossRefPubMedGoogle Scholar
  6. Bosch FX, de Sanjosé S (2003) Chapter 1: human papillomavirus and cervical cancer - burden and assessment of causality. J Natl Cancer Inst Monogr (31):3–13PubMedGoogle Scholar
  7. Bosch FX, de Sanjosé S (2007) The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers 23(4):213–227PubMedGoogle Scholar
  8. Boshart M, Gissmann L, Ikenberg H et al (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 3(5):1151–1157PubMedGoogle Scholar
  9. Boxman ILA, Berkhout RJM, Mulder LHC et al (1997) Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol 108(5):712–715CrossRefPubMedGoogle Scholar
  10. Bracegirdle B (1977) The history of histology: a brief survey of sources. Hist Sci 15:77–101Google Scholar
  11. Brown DR, Fife KH, Wheeler CM et al (2004) Early assessment of the efficacy of a human papillomavirus type 16 L1 virus-like particle vaccine. Vaccine 22(21–22):2936–2942CrossRefPubMedGoogle Scholar
  12. Campo MS, Moar MH, Sartirana ML et al (1985) The presence of bovine papillomavirus type 4 DNA is not required for the progression to, or the maintenance of, the malignant state in cancers of the alimentary canal in cattle. EMBO J 4:1819–1825PubMedGoogle Scholar
  13. Chan SY, Delius H, Halpern AL et al (1995) Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. J Virol 69(5):3074–3083PubMedGoogle Scholar
  14. Christensen ND, Kirnbauer R, Schiller JT et al (1994) Human papillomavirus types 6 and 11 have antigenically distinct strongly immunogenic conformationally dependent neutralizing epitopes. Virology 205:329–335CrossRefPubMedGoogle Scholar
  15. Clifford GM, Gallus S, Herrero R et al (2005) Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet 366(9490):991–998CrossRefPubMedGoogle Scholar
  16. Daling JR, Weiss NS, Hislop TG et al (1987) Sexual practices, sexually transmitted diseases, and the incidence of anal cancer. N Engl J Med 317:973–977CrossRefPubMedGoogle Scholar
  17. Doorbar J (2007) Papillomavirus life cycle organization and biomarker selection. Dis Markers 23(4):297–313PubMedGoogle Scholar
  18. Durst M, Gissmann L, Ikenberg H et al (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 80(12):3812–3815CrossRefPubMedGoogle Scholar
  19. Emeny RT, Wheeler CM, Jansen KU et al (2002) Priming of human papillomavirus type 11-specific humoral and cellular immune responses in college-aged women with a virus-like particle vaccine. J Virol 76(15):7832–7842CrossRefPubMedGoogle Scholar
  20. Evans CA, Gorman LR, Ito Y et al (1962) A vaccination procedure which increases the frequency of regressions of Shope papillomas of rabbits. Nature 193:288–289CrossRefPubMedGoogle Scholar
  21. Favre M, Orth G, Croissant O et al (1975) Human papillomavirus DNA: physical map. Proc Natl Acad Sci USA 72(12):4810–4814CrossRefPubMedGoogle Scholar
  22. Ferguson M, Heath A, Johnes S et al (2006) Results of the first WHO international collaborative study on the standardization of the detection of antibodies to human papillomaviruses. Int J Cancer 118(6):1508–1514CrossRefPubMedGoogle Scholar
  23. Fife KH, Wheeler CM, Koutsky LA et al (2004) Dose-ranging studies of the safety and immunogenicity of human papillomavirus Type 11 and Type 16 virus-like particle candidate vaccines in young healthy women. Vaccine 22(21–22):2943–2952CrossRefPubMedGoogle Scholar
  24. The FUTURE II Study Group (2007) Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 356(19):1915–1927CrossRefGoogle Scholar
  25. Galloway DA (1994) Navigating the descent into papillomavirus hell. J Infect Dis 170:1075–1076PubMedGoogle Scholar
  26. Gambhira R, Gravitt PE, Bossis I et al (2006) Vaccination of healthy volunteers with human papillomavirus type 16 L2E7E6 fusion protein induces serum antibody that neutralizes across papillomavirus species. Cancer Res 66(23):11120–11124CrossRefPubMedGoogle Scholar
  27. Garland SM, Hernandez-Avila M, Wheeler CM et al (2007) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 356(19):1928–1943CrossRefGoogle Scholar
  28. Ghim SJ, Jenson AB, Schlegel R (1992) HPV-1 L1 protein expressed in cos cells displays conformational epitopes found on intact virions. Virology 190(1):548–552CrossRefPubMedGoogle Scholar
  29. Gissmann L, zur Hausen H (1976) Human papilloma virus DNA: physical mapping and genetic heterogeneity. Proc Natl Acad Sci USA 73(4):1310–1313CrossRefPubMedGoogle Scholar
  30. Grimes JL (2006) HPV vaccine development: a case study of prevention and politics. Biochem Mol Biol Educ 34(2):148–154CrossRefGoogle Scholar
  31. Harper DM, Franco EL, Wheeler CM et al (2006) Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367(9518):1247–1255CrossRefPubMedGoogle Scholar
  32. Hildesheim A, Herrero R, Wacholder S et al (2007) Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA7 298(7):743–753CrossRefGoogle Scholar
  33. Inglis S, Shaw A, Koenig S (2006) Chapter 11: HPV vaccines: commercial research & development. Vaccine 24(Suppl 3):S3/99–105Google Scholar
  34. Jansen KU, Rosolowsky M, Schultz LD et al (1995) Vaccination with yeast-expressed cottontail rabbit papillomavirus (CRPV) virus-like particles protects rabbits from CRPV-induced papilloma formation. Vaccine 13(16):1509–1514CrossRefPubMedGoogle Scholar
  35. Jarrett WFH, O’Neil BW, Gaukroger JM et al (1990) Studies on vaccination against papillomaviruses: the immunity after infection and vaccination with bovine papillomaviruses of different types. Vet Rec 126:473–475PubMedGoogle Scholar
  36. Jewers RJ, Hildebrandt P, Ludlow JW et al (1992) Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol 66:1329–1335PubMedGoogle Scholar
  37. Jochmus-Kudielka I, Schneider A, Braun R et al (1989) Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. J Natl Cancer Inst 81(22):1698–1704CrossRefPubMedGoogle Scholar
  38. Joura EA, Leodolter S, Hernandez-Avila M et al (2007) Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet 369(9574):1693–1702CrossRefPubMedGoogle Scholar
  39. Kawana K, Yasugi T, Kanda T et al (2003) Safety and immunogenicity of a peptide containing the cross-neutralization epitope of HPV16 L2 administered nasally in healthy volunteers. Vaccine 21(27–30):4256–4260CrossRefPubMedGoogle Scholar
  40. Kirnbauer R, Booy F, Cheng N et al (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184CrossRefPubMedGoogle Scholar
  41. Kirnbauer R, Taub J, Greenstone H et al (1993) Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol 67(12):6929–6936PubMedGoogle Scholar
  42. Kmietowicz Z (2008) Opportunity was missed in choice of cervical cancer vaccine, health campaigners say. Br Med J 336:1456–1457CrossRefGoogle Scholar
  43. Kondo K, Ishii Y, Ochi H et al (2007) Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 358(2):266–272CrossRefPubMedGoogle Scholar
  44. Koshiol JE, Schroeder JC, Jamieson DJ et al (2006) Time to clearance of human papillomavirus infection by type and human immunodeficiency virus serostatus. Int J Cancer 119(7):1623–1629CrossRefPubMedGoogle Scholar
  45. Koutsky L (1997) Epidemiology of genital human papillomavirus infection. Am J Med 102(5A):3–8CrossRefPubMedGoogle Scholar
  46. Koutsky LA, Ault KA, Wheeler CM et al (2002) A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347(21):1645–1651CrossRefPubMedGoogle Scholar
  47. Lorincz AT, Temple GF, Kurman RJ et al (1987) Oncogenic association of specific human papillomavirus types with cervical neoplasia. JNCI 79:671–677PubMedGoogle Scholar
  48. Lowy DR, Dvoretzky I, Shober R et al (1980) In vitro tumorigenic transformation by a defined sub-genomic fragment of bovine papilloma virus DNA. Nature 287:72–74CrossRefPubMedGoogle Scholar
  49. Mach H, Volkin DB, Troutman RD et al (2006) Disassembly and reassembly of yeast-derived recombinant human papillomavirus virus-like particles (HPV VLPs). J Pharm Sci 95(10):2195–2206CrossRefPubMedGoogle Scholar
  50. Mitchell H, Drake M, Medley (1986) Prospective evaluation of risk of cervical cancer after cytological evidence of human papilloma virus infection. Lancet 1(8481):573–575CrossRefPubMedGoogle Scholar
  51. Munoz N, Bosch FX (1992) HPV and cervical neoplasia: review of case-control and cohort studies. IARC Sci Publ (119):251–261Google Scholar
  52. Orth G, Favre M, Croissant O (1977) Characterization of a new type of human papillomavirus that causes skin warts. J Virol 24(1):108–120PubMedGoogle Scholar
  53. Orth G, Favre M, Jablonska S et al (1978) Viral sequences related to a human skin papillomavirus in genital warts. Nature 275(5678):334–336CrossRefPubMedGoogle Scholar
  54. Paavonen J, Jenkins D, Bosch FX et al (2007) Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369(9580):2161–2170CrossRefPubMedGoogle Scholar
  55. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044CrossRefPubMedGoogle Scholar
  56. Pass F (1974) Warts. Biology and current therapy. Minn Med 57(10):844–847, 852PubMedGoogle Scholar
  57. Pfister H (2003) Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr (31):52–56PubMedGoogle Scholar
  58. Ramoz N, Rueda LA, Bouadjar B et al (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32(4):579–581CrossRefPubMedGoogle Scholar
  59. Rose RC, Bonnez W, Reichman RC et al (1993) Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67(4):1936–1944PubMedGoogle Scholar
  60. Rous P (1966) The nobel prize in physiology or medicine 1966. Nobel lecture: the challenge to man of the neoplastic cell. Accessed 2 Oct 2008
  61. Sasagawa T, Pushko P, Steers G et al (1995) Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology 206:126–135CrossRefPubMedGoogle Scholar
  62. Schäfer F, Florin L, Sapp M (2002) DNA binding of L1 is required for human papillomavirus morphogenesis in vivo. Virology 295(1):172–181CrossRefPubMedGoogle Scholar
  63. Scotto J, Bailar JC III (1969) Rigoni-Stern and medical statistics. A nineteenth-century approach to cancer research. J Hist Med Allied Sci 24(1):65–75CrossRefPubMedGoogle Scholar
  64. Smith MA, Canfell K, Brotherton J et al (2008) The predicted impact of vaccination on human papillomavirus infections in Australia. Int J Cancer 123(8):1854–1863CrossRefPubMedGoogle Scholar
  65. Stanley M (2007) Prophylactic HPV vaccines. J Clin Pathol 60(9):961–965CrossRefPubMedGoogle Scholar
  66. Spradbrow PB, Wilson BE, Hoffmann D et al (1977) Immunotherapy of bovine ocular squamous cell carcinomas. Vet Rec 100(18):376–378CrossRefPubMedGoogle Scholar
  67. Suzich JA, Ghim SJ, Palmer-Hill FJ et al (1995) Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci USA 92(25):11553–11557CrossRefPubMedGoogle Scholar
  68. Tsunokawa Y, Takebe N, Kasamatsu T et al (1986) Transforming activity of human papillomavirus type 16 DNA sequence in a cervical cancer. Proc Natl Acad Sci USA 83:2200–2203CrossRefPubMedGoogle Scholar
  69. US Court of Appeals for the Federal Circuit (2007) Ian Frazer and Jian Zhou v. C. Richard Schlegel and A Bennett Jenson, 2006–1154, Interference No. 104, 776.–1154.pdf. Accessed 10 August 2008
  70. Villa LL, Costa RL, Petta CA et al (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 6(5):271–278CrossRefPubMedGoogle Scholar
  71. Watts SL, Phelps WC, Ostrow RS et al (1984) Cellular transformation by human papillomavirus DNA in vitro. Science 225:634–636CrossRefPubMedGoogle Scholar
  72. Yasumoto S, Burkhardt AL, Doniger J et al (1986) Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J Virol 57:572–577PubMedGoogle Scholar
  73. Yuan H, Estes PA, Chen Y et al (2001) Immunization with a pentameric L1 fusion protein protects against papillomavirus infection. J Virol 75(17):7848–7853CrossRefPubMedGoogle Scholar
  74. Zhou J, Sun XY, Stenzel DJ et al (1991) Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 185(1):251–257CrossRefPubMedGoogle Scholar
  75. zur Hausen H (1976) Condylomata acuminata and human genital cancer. Cancer Res 36(2 pt 2):794PubMedGoogle Scholar
  76. zur Hausen H, Schulte-Holthausen H, Wolf H et al (1974) Attempts to detect virus-specific DNA in human tumors. II. Nucleic acid hybridizations with complementary RNA of human herpes group viruses. Int J Cancer 13(5):657–664CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Diamantina Institute for Cancer Immunology and Metabolic MedicineThe University of Queensland, Princess Alexandra HospitalBrisbaneAustralia

Personalised recommendations