Advertisement

Telomere Dysfunction and Senescence in Stem Cell and Tissues Aging

  • Kodandaramireddy Nalapareddy
  • K. Lenhard Rudolph
Chapter

Abstract

Telomere shortening limits the proliferation of primary human cells in culture by the induction of senescence. There is evidence for telomere shortening in most human tissues during aging and chronic disease. In addition, telomerase mutations are associated with shortened telomeres, impaired organ maintenance, and a shortened lifespan in humans. Studies on telomerase knockout mice have shown that telomere shortening predominantly affects maintenance of organ systems with high rates of cell turnover, indicating that telomere function is important for organs that are constantly replenished from stem cells. These studies also showed that telomere dysfunction induces different cellular outcomes in vivo including cell cycle arrest, apoptosis, and impairment of stem cell function. However, mice with dysfunctional telomeres did not exhibit an accumulation of senescent cells, indicating that, in contrast to in vitro cultures, senescent cells do not persist in vivo in mice. In this chapter, we summarize our current knowledge on consequences of telomere dysfunction on stem cells and tissue aging.

Keywords

Stem Cell Telomere Length Adult Stem Cell Senescent Cell Cell Turnover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allsopp RC, Weissman IL (2002) Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role? Oncogene 21:3270–3273CrossRefPubMedGoogle Scholar
  2. Allsopp RC, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszek MA, Shay JW, Harley CB (1995) Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 220:194–200CrossRefPubMedGoogle Scholar
  3. Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, Weissman IL (2003) Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med 9:369–371CrossRefPubMedGoogle Scholar
  4. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645CrossRefPubMedGoogle Scholar
  5. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007CrossRefPubMedGoogle Scholar
  6. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171CrossRefPubMedGoogle Scholar
  7. Barlow C, Dennery PA, Shigenaga MK, Smith MA, Morrow JD, Roberts LJ II, Wynshaw-Boris A, Levine RL (1999) Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci USA 96:9915–9919CrossRefPubMedGoogle Scholar
  8. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222CrossRefPubMedGoogle Scholar
  9. Bejus-Nahrmann Y, Lechel A, Obenaut AC, Nalapareddy K, Peit E, Haffmann E, Schlaudraff, F, Liss B, Schirmazher P, Kestler H, et al. (2009) p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere dysfunctional mice. Nat Genet doi 10:1038/rg.426Google Scholar
  10. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34CrossRefPubMedGoogle Scholar
  11. Brookes S, Rowe J, Gutierrez Del Arroyo A, Bond J, Peters G (2004) Contribution of p16(INK4a) to replicative senescence of human fibroblasts. Exp Cell Res 298:549–559CrossRefPubMedGoogle Scholar
  12. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402PubMedGoogle Scholar
  13. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834CrossRefPubMedGoogle Scholar
  14. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395CrossRefPubMedGoogle Scholar
  15. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5:e201CrossRefPubMedGoogle Scholar
  16. Chen JH, Hales CN, Ozanne SE (2007) DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 35:7417–7428CrossRefPubMedGoogle Scholar
  17. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538CrossRefPubMedGoogle Scholar
  18. Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39:99–105CrossRefPubMedGoogle Scholar
  19. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198CrossRefPubMedGoogle Scholar
  20. Delhaye M, Louis H, Degraef C, Le Moine O, Deviere J, Gulbis B, Jacobovitz D, Adler M, Galand P (1996) Relationship between hepatocyte proliferative activity and liver functional reserve in human cirrhosis. Hepatology 23:1003–1011CrossRefPubMedGoogle Scholar
  21. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367CrossRefPubMedGoogle Scholar
  22. Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J, Leder P (1996) Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 93:13084–13089CrossRefPubMedGoogle Scholar
  23. Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW, DePinho RA (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 97:515–525CrossRefPubMedGoogle Scholar
  24. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460CrossRefPubMedGoogle Scholar
  25. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513CrossRefPubMedGoogle Scholar
  26. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257CrossRefPubMedGoogle Scholar
  27. Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco MA (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18:2950–2960CrossRefPubMedGoogle Scholar
  28. Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 101:14443–14448CrossRefPubMedGoogle Scholar
  29. Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163CrossRefPubMedGoogle Scholar
  30. Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ, Van Lohuizen M, Band V, Campisi J, Dimri GP (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23:389–401CrossRefPubMedGoogle Scholar
  31. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002CrossRefPubMedGoogle Scholar
  32. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426PubMedGoogle Scholar
  33. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44CrossRefPubMedGoogle Scholar
  34. Jiang H, Ju Z, Rudolph KL (2007) Telomere shortening and ageing. Z Gerontol Geriatr 40:314–324CrossRefPubMedGoogle Scholar
  35. Jiang H, Schiffer E, Song Z, Wang J, Zurbig P, Thedieck K, Moes S, Bantel H, Saal N, Jantos J et al (2008) Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci USA 105:11299–11304CrossRefPubMedGoogle Scholar
  36. Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Trumpp A, Rudolph KL (2007) Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13:742–747CrossRefPubMedGoogle Scholar
  37. Khoo CM, Carrasco DR, Bosenberg MW, Paik JH, Depinho RA (2007) Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse. Proc Natl Acad Sci USA 104:3931–3936CrossRefPubMedGoogle Scholar
  38. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307PubMedGoogle Scholar
  39. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–457CrossRefPubMedGoogle Scholar
  40. Lechel A, Manns MP, Rudolph KL (2004) Telomeres and telomerase: new targets for the treatment of liver cirrhosis and hepatocellular carcinoma. J Hepatol 41:491–497CrossRefPubMedGoogle Scholar
  41. Lee HW, Blasco MA, Gottlieb GJ, Horner JW II, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574CrossRefPubMedGoogle Scholar
  42. Maringele L, Lydall D (2002) EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 16:1919–1933CrossRefPubMedGoogle Scholar
  43. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452CrossRefPubMedGoogle Scholar
  44. Nalapareddy K. Jiang H. Gutierrez L.M. Rudolph KL (2008) Determining the influence of telomere dysfunction and DNA damage on stem and progenitor cell aging-What markers can we use? Exp Gerontol 43:998–1004CrossRefPubMedGoogle Scholar
  45. Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92:4818–4822CrossRefPubMedGoogle Scholar
  46. Qi L, Strong MA, Karim BO, Armanios M, Huso DL, Greider CW (2003) Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res 63:8188–8196PubMedGoogle Scholar
  47. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086CrossRefPubMedGoogle Scholar
  48. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729CrossRefPubMedGoogle Scholar
  49. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712CrossRefPubMedGoogle Scholar
  50. Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA (2000) Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287:1253–1258CrossRefPubMedGoogle Scholar
  51. Satyanarayana A, Wiemann SU, Buer J, Lauber J, Dittmar KE, Wustefeld T, Blasco MA, Manns MP, Rudolph KL (2003) Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. EMBO J 22:4003–4013CrossRefPubMedGoogle Scholar
  52. Satyanarayana A, Greenberg RA, Schaetzlein S, Buer J, Masutomi K, Hahn WC, Zimmermann S, Martens U, Manns MP, Rudolph KL (2004) Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling. Mol Cell Biol 24:5459–5474CrossRefPubMedGoogle Scholar
  53. Schaetzlein S, Kodandaramireddy NR, Ju Z, Lechel A, Stepczynska A, Lilli DR, Clark AB, Rudolph C, Kuhnel F, Wei K et al (2007) Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 130:863–877CrossRefPubMedGoogle Scholar
  54. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6:168–170CrossRefPubMedGoogle Scholar
  55. Seidel JJ, Anderson CM, Blackburn EH (2008) A novel Tel1/ATM N-terminal motif, TAN, is essential for telomere length maintenance and a DNA damage response. Mol Cell Biol 28:5736–5746CrossRefPubMedGoogle Scholar
  56. Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19:2109–2117PubMedGoogle Scholar
  57. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556CrossRefPubMedGoogle Scholar
  58. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91:9857–9860CrossRefPubMedGoogle Scholar
  59. Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H Jr, Kneitz B et al (2003) Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 17:603–614CrossRefPubMedGoogle Scholar
  60. Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, Flemming P, Franco S, Blasco MA, Manns MP et al (2002) Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 16:935–942CrossRefPubMedGoogle Scholar
  61. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129CrossRefPubMedGoogle Scholar
  62. Wong KK, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421:643–648CrossRefPubMedGoogle Scholar
  63. Wright WE, Shay JW (1992) The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 27:383–389CrossRefPubMedGoogle Scholar
  64. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10:2411–2422CrossRefPubMedGoogle Scholar
  65. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660CrossRefPubMedGoogle Scholar
  66. Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE (2004) Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell 15:3709–3718CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kodandaramireddy Nalapareddy
    • 1
  • K. Lenhard Rudolph
    • 1
  1. 1.Institute of Molecular Medicine and Max-Planck-Research-Group on Stem Cell AgingUlmGermany

Personalised recommendations