Role of RecQ Helicases in Nuclear DNA Repair and Telomere Maintenance

  • Avik Ghosh
  • Yie Liu
  • Vilhelm A. Bohr


Survival of an organism is reliant on preservation of genomic integrity. The RecQ helicase family of proteins plays crucial roles in maintaining genomic stability. DNA repair processes are very important for restoring the damaged DNA, and increasing lines of evidence suggest that RecQ helicases are involved in these processes. Telomeres are situated at the end of linear chromosomes, where they play key roles in the preservation of genome stability. Telomerase and telomere protein complexes play key roles in telomere length regulation. The latter, referred as the shelterin complex, also acts on telomere-specific structures and telomere capping. Other telomere-associated proteins are involved in the proper processing of telomere length, structure and capping. RecQ helicases, especially WRN, are also believed to be involved in the maintenance of telomeres. They are implicated in replication, recombination and proper repair of telomeric DNA.


Base Excision Repair Replication Fork Sister Chromatid Exchange Werner Syndrome Holliday Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Alternative lengthening of telomeres


Base excision repair


Bloom syndrome


Double-strand break


Double-strand break repair


Double-stranded DNA


Fluorescence in situ hybridization




Holiday junction


Homologous recombination


Interstrand crosslink


Long patch base excision repair


Mismatch repair


Nucleotide excision repair


Nonhomologous end-joining


Reactive oxygen species


Rothmund–Thomson syndrome


RecQ Conserved


Single-strand break repair


Sister chromatid exchange


Short-patch base excision repair


Single-stranded DNA


Telomere dysfunction-induced foci


Werner syndrome



This work was supported in part by funds from the National Institute on Aging, National Institutes of Health Intramural Research Program.


  1. Ahn B, Harrigan JA, Indig FE, Wilson DM III, Bohr VA (2004) Regulation of WRN helicase activity in human base excision repair. J Biol Chem 279:53465–53474CrossRefPubMedGoogle Scholar
  2. Baynton K, Otterlei M, Bjoras M, von KC, Bohr VA, Seeberg E (2003) WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 278:36476–36486CrossRefPubMedGoogle Scholar
  3. Bianchi A, Shore D (2008) Molecular biology – refined view of the ends. Science 320:1301–1302CrossRefPubMedGoogle Scholar
  4. Blackburn EH, Szostak JW (1984) The molecular-structure of centromeres and telomeres. Annu Rev Biochem 53:163–194CrossRefPubMedGoogle Scholar
  5. Blank A, Bobola MS, Gold B, Varadarajan S, Kolstoe D, Meade EH, Rabinovitch PS, Loeb LA, Silber JR (2004) The Werner syndrome protein confers resistance to the DNA lesions N3-methyladenine and O6-methylguanine: implications for WRN function. DNA Repair (Amst) 3:629–638Google Scholar
  6. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649CrossRefPubMedGoogle Scholar
  7. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34CrossRefPubMedGoogle Scholar
  8. Bohr VA (2008) Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 33:609–620CrossRefPubMedGoogle Scholar
  9. Brosh RM Jr, Driscoll HC, Dianov GL, Sommers JA (2002) Biochemical characterization of the WRN-FEN-1 functional interaction. Biochemistry 41:12204–12216CrossRefPubMedGoogle Scholar
  10. Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–U162CrossRefPubMedGoogle Scholar
  11. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882CrossRefPubMedGoogle Scholar
  12. Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M, Bohr VA (2006) Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 34:2751–2760CrossRefPubMedGoogle Scholar
  13. Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA (2008) WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 19:3923–3933CrossRefPubMedGoogle Scholar
  14. Cheng WH, von KC, Opresko PL, Arthur LM, Komatsu K, Seidman MM, Carney JP, Bohr VA (2004) Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279:21169–21176CrossRefPubMedGoogle Scholar
  15. Chiang YJ, Kim SH, Tessarollo L, Campisi J, Hodes RJ (2004) Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase-independent pathway. Mol Cell Biol 24:6631–6634CrossRefPubMedGoogle Scholar
  16. Cohen H, Sinclair DA (2001) Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Natl Acad Sci U S A 98:3174–3179CrossRefPubMedGoogle Scholar
  17. Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14:907–912PubMedGoogle Scholar
  18. Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J (2007) Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A 104:2205–2210CrossRefPubMedGoogle Scholar
  19. Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–1953CrossRefPubMedGoogle Scholar
  20. Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, de Souza-Pinto N, Ramos W, Greenberg MM, Hazra TK, Mitra S, Bohr VA (2007) The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase Neil1. J Biol Chem 282:26591–26602CrossRefPubMedGoogle Scholar
  21. de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540CrossRefPubMedGoogle Scholar
  22. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110CrossRefPubMedGoogle Scholar
  23. di Fagagna FD, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198CrossRefGoogle Scholar
  24. di Fagagna FD, Teo SH, Jackson SP (2004) Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18:1781–1799CrossRefGoogle Scholar
  25. Dietschy T, Shevelev I, Stagljar I (2007) The molecular role of the Rothmund-Thomson-, RAPADILINO- and Baller-Gerold-gene product, RECQL4: recent progress. Cell Mol Life Sci 64:796–802CrossRefPubMedGoogle Scholar
  26. Eller MS, Liao XD, Liu SY, Hanna K, Backvall H, Opresko PL, Bohr VA, Gilchrest BA (2006) A role for WRN in telomere-based DNA damage responses. Proc Natl Acad Sci USA 103:15073–15078CrossRefPubMedGoogle Scholar
  27. Erdmann N, Liu Y, Harrington L (2004) Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proc Natl Acad Sci USA 101:6080–6085CrossRefPubMedGoogle Scholar
  28. Garcia PL, Liu Y, Jiricny J, West SC, Janscak P (2004) Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J 23:2882–2891CrossRefPubMedGoogle Scholar
  29. Greider CW, Blackburn EH (1996) Telomeres, telomerase and cancer. Sci Am 274:92–97CrossRefPubMedGoogle Scholar
  30. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514CrossRefPubMedGoogle Scholar
  31. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during aging of human fibroblasts. Nature 345:458–460CrossRefPubMedGoogle Scholar
  32. Harrigan JA, Fan J, Momand J, Perrino FW, Bohr VA, Wilson DM III (2007) WRN exonuclease activity is blocked by DNA termini harboring 3’ obstructive groups. Mech Ageing Dev 128:259–266CrossRefPubMedGoogle Scholar
  33. Harrigan JA, Opresko PL, von KC, Kedar PS, Prasad R, Wilson SH, Bohr VA (2003) The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. J Biol Chem 278:22686–22695CrossRefPubMedGoogle Scholar
  34. Harrigan JA, Wilson DM III, Prasad R, Opresko PL, Beck G, May A, Wilson SH, Bohr VA (2006) The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res 34:745–754CrossRefPubMedGoogle Scholar
  35. He H, Multani AS, Cosme-Blanco W, Tahara H, Ma J, Pathak S, Deng YB, Chang S (2006) POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J 25:5180–5190CrossRefPubMedGoogle Scholar
  36. Hockemeyer D, Daniels JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126:63–77CrossRefPubMedGoogle Scholar
  37. Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de Lange T (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 24:2667–2678CrossRefPubMedGoogle Scholar
  38. Hu J, de Souza-Pinto NC, Haraguchi K, Hogue BA, Jaruga P, Greenberg MM, Dizdaroglu M, Bohr VA (2005a) Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes. J Biol Chem 280:40544–40551CrossRefPubMedGoogle Scholar
  39. Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G (2005b) Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossoversHU2005. Mol Cell Biol 25:3431–3442CrossRefPubMedGoogle Scholar
  40. Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, Jasin M, Vogel H, Sung P, Luo G (2007) RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–3084CrossRefPubMedGoogle Scholar
  41. Imoto S, Patro JN, Jiang YL, Oka N, Greenberg MM (2006) Synthesis, DNA polymerase incorporation, and enzymatic phosphate hydrolysis of formamidopyrimidine nucleoside triphosphates. J Am Chem Soc 128:14606–14611CrossRefPubMedGoogle Scholar
  42. Jaruga P, Birincioglu M, Rosenquist TA, Dizdaroglu M (2004) Mouse NEIL1 protein is specific for excision of 2, 6-diamino-4-hydroxy-5-formamidopyrimidine and 4, 6-diamino-5-formamidopyrimidine from oxidatively damaged DNA. Biochemistry 43:15909–15914CrossRefPubMedGoogle Scholar
  43. Jeong YS, Kang Y, Lim KH, Lee MH, Lee J, Koo HS (2003) Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2:1309–1319CrossRefGoogle Scholar
  44. Jin W, Liu H, Zhang Y, Otta SK, Plon SE, Wang LL (2008) Sensitivity of RECQL4-deficient fibroblasts from Rothmund-Thomson syndrome patients to genotoxic agents. Hum Genet 123:643–653CrossRefPubMedGoogle Scholar
  45. Kamath-Loeb AS, Loeb LA, Johansson E, Burgers PMJ, Fry M (2001) Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)(n) trinucleotide repeat sequence. J Biol Chem 276:16439–16446CrossRefPubMedGoogle Scholar
  46. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449CrossRefPubMedGoogle Scholar
  47. Karmakar P, Piotrowski J, Brosh RM Jr, Sommers JA, Miller SP, Cheng WH, Snowden CM, Ramsden DA, Bohr VA (2002a) Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 277:18291–18302CrossRefPubMedGoogle Scholar
  48. Karmakar P, Snowden CM, Ramsden DA, Bohr VA (2002b) Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res 30:3583–3591CrossRefPubMedGoogle Scholar
  49. Kruk PA, Rampino NJ, Bohr VA (1995) DNA-damage and repair in telomeres - relation to aging. Proc Natl Acad Sci USA 92:258–262CrossRefPubMedGoogle Scholar
  50. Kusumoto R, Dawut L, Marchetti C, Wan LJ, Vindigni A, Ramsden D, Bohr VA (2008) Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47:7548–7556CrossRefPubMedGoogle Scholar
  51. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960CrossRefPubMedGoogle Scholar
  52. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715CrossRefPubMedGoogle Scholar
  53. Liu Y, Snow BE, Hande MP, Yeung D, Erdmann NJ, Wakeham A, Itie A, Siderovski DP, Lansdorp PM, Robinson MO, Harrington L (2000) The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr Biol 10:1459–1462CrossRefPubMedGoogle Scholar
  54. Loayza D, de Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423:1013–1018CrossRefPubMedGoogle Scholar
  55. Mandell JG, Goodrich KJ, Bahler J, Cech TR (2005) Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J Biol Chem 280:5249–5257CrossRefPubMedGoogle Scholar
  56. Mohaghegh P, Karow JK, Brosh JR Jr, Bohr VA, Hickson ID (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:2843–2849CrossRefPubMedGoogle Scholar
  57. Newman JPA, Banerjee B, Fang WR, Poonepalli A, Balakrishnan L, Low GKM, Bhattacharjee RN, Akira S, Jayapal M, Melendez AJ, Baskar R, Lee HW, Hande MP (2008) Short dysfunctional telomeres impair the repair of arsenite-induced oxidative damage in mouse cells. J Cell Physiol 214:796–809CrossRefPubMedGoogle Scholar
  58. Opresko PL (2008) Telomere ResQue and preservation-roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 129:79–90CrossRefPubMedGoogle Scholar
  59. Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA (2003) Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24:791–802CrossRefPubMedGoogle Scholar
  60. Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA (2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 280:32069–32080CrossRefPubMedGoogle Scholar
  61. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14:763–774CrossRefPubMedGoogle Scholar
  62. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119CrossRefPubMedGoogle Scholar
  63. Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K, Bohr VA (2006) Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 119:5137–5146CrossRefPubMedGoogle Scholar
  64. Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15:1224–1226PubMedGoogle Scholar
  65. Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M (2008) Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198:347–353CrossRefPubMedGoogle Scholar
  66. Savage SA, Alter BP (2008) The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev 129:35–47CrossRefPubMedGoogle Scholar
  67. Sharma S, Doherty KM, Brosh RM Jr (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398:319–337CrossRefPubMedGoogle Scholar
  68. Sharma S, Otterlei M, Sommers JA, Driscoll HC, Dianov GL, Kao HI, Bambara RA, Brosh RM Jr (2004) WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork. Mol Biol Cell 15:734–750CrossRefPubMedGoogle Scholar
  69. Shen JC, Loeb LA (2000) Werner syndrome exonuclease catalyzes structure-dependent degradation of DNA. Nucleic Acids Res 28:3260–3268CrossRefPubMedGoogle Scholar
  70. Smith S, de Lange T (2000) Tankyrase promotes telomere elongation in human cells. Curr Biol 10:1299–1302CrossRefPubMedGoogle Scholar
  71. Van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413CrossRefPubMedGoogle Scholar
  72. von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA (2003) Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 23:8601–8613CrossRefGoogle Scholar
  73. von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM Jr, Hickson ID, Bohr VA (2002) Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. J Biol Chem 277:22035–22044CrossRefGoogle Scholar
  74. von KC, Bohr VA (2002) A nucleolar targeting sequence in the Werner syndrome protein resides within residues 949–1092. J Cell Sci 115:3901–3907CrossRefGoogle Scholar
  75. Wang F, Podell ER, Zaug AJ, Yang YT, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510CrossRefPubMedGoogle Scholar
  76. Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H, Ishii Y, Enomoto T (2003) Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM in cell growth and sister chromatid exchange formation. Mol Cell Biol 23:3527–3535CrossRefPubMedGoogle Scholar
  77. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201CrossRefPubMedGoogle Scholar
  78. Wu L, Davies SL, Levitt NC, Hickson ID (2001) Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381CrossRefPubMedGoogle Scholar
  79. Wu L, Hickson ID (2006) DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 40:279–306CrossRefPubMedGoogle Scholar
  80. Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Deng YB, Behringer RR, Chang S (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126:49–62CrossRefPubMedGoogle Scholar
  81. Xin HW, Liu D, Wan M, Safari A, Kim H, Sun W, O’Connor MS, Zhou SY (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445:559–562CrossRefPubMedGoogle Scholar
  82. Yin J, Kwon YT, Varshavsky A, Wang W (2004) RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 13:2421–2430CrossRefPubMedGoogle Scholar
  83. Zhu XD, Niedernhofer L, Kuster B, Mann M, Hoeijmakers JHJ, de Lange T (2003) ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 12:1489–1498CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratory of Molecular GerontologyBaltimoreUSA

Personalised recommendations