Skip to main content

Role of RecQ Helicases in Nuclear DNA Repair and Telomere Maintenance

  • Chapter
  • First Online:
Cellular Senescence and Tumor Suppression
  • 606 Accesses

Abstract

Survival of an organism is reliant on preservation of genomic integrity. The RecQ helicase family of proteins plays crucial roles in maintaining genomic stability. DNA repair processes are very important for restoring the damaged DNA, and increasing lines of evidence suggest that RecQ helicases are involved in these processes. Telomeres are situated at the end of linear chromosomes, where they play key roles in the preservation of genome stability. Telomerase and telomere protein complexes play key roles in telomere length regulation. The latter, referred as the shelterin complex, also acts on telomere-specific structures and telomere capping. Other telomere-associated proteins are involved in the proper processing of telomere length, structure and capping. RecQ helicases, especially WRN, are also believed to be involved in the maintenance of telomeres. They are implicated in replication, recombination and proper repair of telomeric DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

8-oxodG:

8-oxo-7,8-dihydroguanine

ALT:

Alternative lengthening of telomeres

BER:

Base excision repair

BS:

Bloom syndrome

DSB:

Double-strand break

DSBR:

Double-strand break repair

dsDNA:

Double-stranded DNA

FISH:

Fluorescence in situ hybridization

G4:

G-quadruplex

HJ:

Holiday junction

HR:

Homologous recombination

ICL:

Interstrand crosslink

LP-BER:

Long patch base excision repair

MMR:

Mismatch repair

NER:

Nucleotide excision repair

NHEJ:

Nonhomologous end-joining

ROS:

Reactive oxygen species

RTS:

Rothmund–Thomson syndrome

RQS:

RecQ Conserved

SBR:

Single-strand break repair

SCE:

Sister chromatid exchange

SP-BER:

Short-patch base excision repair

ssDNA:

Single-stranded DNA

TIF:

Telomere dysfunction-induced foci

WS:

Werner syndrome

References

  • Ahn B, Harrigan JA, Indig FE, Wilson DM III, Bohr VA (2004) Regulation of WRN helicase activity in human base excision repair. J Biol Chem 279:53465–53474

    Article  CAS  PubMed  Google Scholar 

  • Baynton K, Otterlei M, Bjoras M, von KC, Bohr VA, Seeberg E (2003) WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 278:36476–36486

    Article  CAS  PubMed  Google Scholar 

  • Bianchi A, Shore D (2008) Molecular biology – refined view of the ends. Science 320:1301–1302

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH, Szostak JW (1984) The molecular-structure of centromeres and telomeres. Annu Rev Biochem 53:163–194

    Article  CAS  PubMed  Google Scholar 

  • Blank A, Bobola MS, Gold B, Varadarajan S, Kolstoe D, Meade EH, Rabinovitch PS, Loeb LA, Silber JR (2004) The Werner syndrome protein confers resistance to the DNA lesions N3-methyladenine and O6-methylguanine: implications for WRN function. DNA Repair (Amst) 3:629–638

    CAS  Google Scholar 

  • Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  • Bohr VA (2008) Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 33:609–620

    Article  CAS  PubMed  Google Scholar 

  • Brosh RM Jr, Driscoll HC, Dianov GL, Sommers JA (2002) Biochemical characterization of the WRN-FEN-1 functional interaction. Biochemistry 41:12204–12216

    Article  CAS  PubMed  Google Scholar 

  • Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–U162

    Article  PubMed  Google Scholar 

  • Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M, Bohr VA (2006) Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 34:2751–2760

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA (2008) WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 19:3923–3933

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, von KC, Opresko PL, Arthur LM, Komatsu K, Seidman MM, Carney JP, Bohr VA (2004) Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279:21169–21176

    Article  CAS  PubMed  Google Scholar 

  • Chiang YJ, Kim SH, Tessarollo L, Campisi J, Hodes RJ (2004) Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase-independent pathway. Mol Cell Biol 24:6631–6634

    Article  CAS  PubMed  Google Scholar 

  • Cohen H, Sinclair DA (2001) Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Natl Acad Sci U S A 98:3174–3179

    Article  CAS  PubMed  Google Scholar 

  • Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14:907–912

    CAS  PubMed  Google Scholar 

  • Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J (2007) Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A 104:2205–2210

    Article  CAS  PubMed  Google Scholar 

  • Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–1953

    Article  CAS  PubMed  Google Scholar 

  • Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, de Souza-Pinto N, Ramos W, Greenberg MM, Hazra TK, Mitra S, Bohr VA (2007) The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase Neil1. J Biol Chem 282:26591–26602

    Article  CAS  PubMed  Google Scholar 

  • de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540

    Article  PubMed  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  Google Scholar 

  • di Fagagna FD, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  Google Scholar 

  • di Fagagna FD, Teo SH, Jackson SP (2004) Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18:1781–1799

    Article  Google Scholar 

  • Dietschy T, Shevelev I, Stagljar I (2007) The molecular role of the Rothmund-Thomson-, RAPADILINO- and Baller-Gerold-gene product, RECQL4: recent progress. Cell Mol Life Sci 64:796–802

    Article  CAS  PubMed  Google Scholar 

  • Eller MS, Liao XD, Liu SY, Hanna K, Backvall H, Opresko PL, Bohr VA, Gilchrest BA (2006) A role for WRN in telomere-based DNA damage responses. Proc Natl Acad Sci USA 103:15073–15078

    Article  CAS  PubMed  Google Scholar 

  • Erdmann N, Liu Y, Harrington L (2004) Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proc Natl Acad Sci USA 101:6080–6085

    Article  CAS  PubMed  Google Scholar 

  • Garcia PL, Liu Y, Jiricny J, West SC, Janscak P (2004) Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J 23:2882–2891

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1996) Telomeres, telomerase and cancer. Sci Am 274:92–97

    Article  CAS  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during aging of human fibroblasts. Nature 345:458–460

    Article  CAS  PubMed  Google Scholar 

  • Harrigan JA, Fan J, Momand J, Perrino FW, Bohr VA, Wilson DM III (2007) WRN exonuclease activity is blocked by DNA termini harboring 3’ obstructive groups. Mech Ageing Dev 128:259–266

    Article  CAS  PubMed  Google Scholar 

  • Harrigan JA, Opresko PL, von KC, Kedar PS, Prasad R, Wilson SH, Bohr VA (2003) The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. J Biol Chem 278:22686–22695

    Article  CAS  PubMed  Google Scholar 

  • Harrigan JA, Wilson DM III, Prasad R, Opresko PL, Beck G, May A, Wilson SH, Bohr VA (2006) The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res 34:745–754

    Article  CAS  PubMed  Google Scholar 

  • He H, Multani AS, Cosme-Blanco W, Tahara H, Ma J, Pathak S, Deng YB, Chang S (2006) POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J 25:5180–5190

    Article  CAS  PubMed  Google Scholar 

  • Hockemeyer D, Daniels JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126:63–77

    Article  CAS  PubMed  Google Scholar 

  • Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de Lange T (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 24:2667–2678

    Article  CAS  PubMed  Google Scholar 

  • Hu J, de Souza-Pinto NC, Haraguchi K, Hogue BA, Jaruga P, Greenberg MM, Dizdaroglu M, Bohr VA (2005a) Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes. J Biol Chem 280:40544–40551

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G (2005b) Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossoversHU2005. Mol Cell Biol 25:3431–3442

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, Jasin M, Vogel H, Sung P, Luo G (2007) RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–3084

    Article  CAS  PubMed  Google Scholar 

  • Imoto S, Patro JN, Jiang YL, Oka N, Greenberg MM (2006) Synthesis, DNA polymerase incorporation, and enzymatic phosphate hydrolysis of formamidopyrimidine nucleoside triphosphates. J Am Chem Soc 128:14606–14611

    Article  CAS  PubMed  Google Scholar 

  • Jaruga P, Birincioglu M, Rosenquist TA, Dizdaroglu M (2004) Mouse NEIL1 protein is specific for excision of 2, 6-diamino-4-hydroxy-5-formamidopyrimidine and 4, 6-diamino-5-formamidopyrimidine from oxidatively damaged DNA. Biochemistry 43:15909–15914

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS, Kang Y, Lim KH, Lee MH, Lee J, Koo HS (2003) Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2:1309–1319

    Article  CAS  Google Scholar 

  • Jin W, Liu H, Zhang Y, Otta SK, Plon SE, Wang LL (2008) Sensitivity of RECQL4-deficient fibroblasts from Rothmund-Thomson syndrome patients to genotoxic agents. Hum Genet 123:643–653

    Article  CAS  PubMed  Google Scholar 

  • Kamath-Loeb AS, Loeb LA, Johansson E, Burgers PMJ, Fry M (2001) Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)(n) trinucleotide repeat sequence. J Biol Chem 276:16439–16446

    Article  CAS  PubMed  Google Scholar 

  • Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449

    Article  CAS  PubMed  Google Scholar 

  • Karmakar P, Piotrowski J, Brosh RM Jr, Sommers JA, Miller SP, Cheng WH, Snowden CM, Ramsden DA, Bohr VA (2002a) Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 277:18291–18302

    Article  CAS  PubMed  Google Scholar 

  • Karmakar P, Snowden CM, Ramsden DA, Bohr VA (2002b) Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res 30:3583–3591

    Article  CAS  PubMed  Google Scholar 

  • Kruk PA, Rampino NJ, Bohr VA (1995) DNA-damage and repair in telomeres - relation to aging. Proc Natl Acad Sci USA 92:258–262

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto R, Dawut L, Marchetti C, Wan LJ, Vindigni A, Ramsden D, Bohr VA (2008) Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47:7548–7556

    Article  CAS  PubMed  Google Scholar 

  • Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Snow BE, Hande MP, Yeung D, Erdmann NJ, Wakeham A, Itie A, Siderovski DP, Lansdorp PM, Robinson MO, Harrington L (2000) The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr Biol 10:1459–1462

    Article  CAS  PubMed  Google Scholar 

  • Loayza D, de Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423:1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Mandell JG, Goodrich KJ, Bahler J, Cech TR (2005) Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J Biol Chem 280:5249–5257

    Article  CAS  PubMed  Google Scholar 

  • Mohaghegh P, Karow JK, Brosh JR Jr, Bohr VA, Hickson ID (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:2843–2849

    Article  CAS  PubMed  Google Scholar 

  • Newman JPA, Banerjee B, Fang WR, Poonepalli A, Balakrishnan L, Low GKM, Bhattacharjee RN, Akira S, Jayapal M, Melendez AJ, Baskar R, Lee HW, Hande MP (2008) Short dysfunctional telomeres impair the repair of arsenite-induced oxidative damage in mouse cells. J Cell Physiol 214:796–809

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL (2008) Telomere ResQue and preservation-roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 129:79–90

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA (2003) Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24:791–802

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA (2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 280:32069–32080

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14:763–774

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119

    Article  CAS  PubMed  Google Scholar 

  • Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K, Bohr VA (2006) Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 119:5137–5146

    Article  CAS  PubMed  Google Scholar 

  • Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15:1224–1226

    CAS  PubMed  Google Scholar 

  • Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M (2008) Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198:347–353

    Article  CAS  PubMed  Google Scholar 

  • Savage SA, Alter BP (2008) The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev 129:35–47

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Doherty KM, Brosh RM Jr (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398:319–337

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Otterlei M, Sommers JA, Driscoll HC, Dianov GL, Kao HI, Bambara RA, Brosh RM Jr (2004) WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork. Mol Biol Cell 15:734–750

    Article  CAS  PubMed  Google Scholar 

  • Shen JC, Loeb LA (2000) Werner syndrome exonuclease catalyzes structure-dependent degradation of DNA. Nucleic Acids Res 28:3260–3268

    Article  CAS  PubMed  Google Scholar 

  • Smith S, de Lange T (2000) Tankyrase promotes telomere elongation in human cells. Curr Biol 10:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413

    Article  PubMed  Google Scholar 

  • von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA (2003) Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 23:8601–8613

    Article  Google Scholar 

  • von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM Jr, Hickson ID, Bohr VA (2002) Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. J Biol Chem 277:22035–22044

    Article  Google Scholar 

  • von KC, Bohr VA (2002) A nucleolar targeting sequence in the Werner syndrome protein resides within residues 949–1092. J Cell Sci 115:3901–3907

    Article  Google Scholar 

  • Wang F, Podell ER, Zaug AJ, Yang YT, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H, Ishii Y, Enomoto T (2003) Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM in cell growth and sister chromatid exchange formation. Mol Cell Biol 23:3527–3535

    Article  CAS  PubMed  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Davies SL, Levitt NC, Hickson ID (2001) Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Hickson ID (2006) DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 40:279–306

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Deng YB, Behringer RR, Chang S (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126:49–62

    Article  CAS  PubMed  Google Scholar 

  • Xin HW, Liu D, Wan M, Safari A, Kim H, Sun W, O’Connor MS, Zhou SY (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445:559–562

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Kwon YT, Varshavsky A, Wang W (2004) RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 13:2421–2430

    Article  CAS  PubMed  Google Scholar 

  • Zhu XD, Niedernhofer L, Kuster B, Mann M, Hoeijmakers JHJ, de Lange T (2003) ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 12:1489–1498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funds from the National Institute on Aging, National Institutes of Health Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilhelm A. Bohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghosh, A., Liu, Y., Bohr, V.A. (2010). Role of RecQ Helicases in Nuclear DNA Repair and Telomere Maintenance. In: Adams, P., Sedivy, J. (eds) Cellular Senescence and Tumor Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1075-2_2

Download citation

Publish with us

Policies and ethics