Advertisement

Methods in Cellular and Molecular Pathology

  • Paul Komminoth
  • Axel Walch
  • Martin Werner
  • Aurel A. Perren
Chapter

Abstract

This is an overview and introduction to cellular and molecular methods, which are applied in diagnostic and investigative endocrine pathology. In the first part of the chapter, the principles of immunohistochemical techniques are discussed, including necessary controls and an approach to test new antibodies. The second part of the chapter deals with molecular methods. After a general introduction to molecular biology, an overview of methods is provided which are applied in situ to identify DNA, specific mRNAs and chromosomal structures at a cellular level, such as in situ hybridization (ISH), fluorescent in situ hybridization (FISH) and in situ proteomics. The third part of the chapter focuses on liquid-based molecular methods, which are applied in endocrine pathology. They include microdissection of cell groups for molecular analyses, polymerase chain reaction (PCR)-based methods for DNA and RNA detection as well as the analysis of mutations, loss of heterozygosity and clonality. Furthermore, comparative genomic hybridization (CGH) and the RNA expression array technology to identify chromosomal gains and losses as well as gene expression are discussed.

Keywords

Molecular pathology Methods Immunohistochemistry PCR In situ hybridization In situ PCR CGH Array – applications 

Notes

Acknowledgments

We thank Parvin Saremaslani, Seraina Muletta-Feurer, Katrin Rütimann, Claudia Matter and Sonja Schmid for technical support; Stefan Wey, Norbert Wey and Stephanie Kaufmann for photographic and computer-assisted reproductions; and Susanna Komminoth-Stamm for preparing parts of the manuscript.

This chapter is dedicated to Hubert J. Wolfe, a pioneer in molecular endocrine pathology.

References

  1. 1.
    Coons AH, Creech HJ, Jones NR (1942) The demonstration of pneumococcal antigen in tissue by the use of fluorescent antibody. J Immunol 256:495–497Google Scholar
  2. 2.
    Stone MJ (2001) Monoclonal antibodies in the prehybridoma era: a brief historical perspective and personal reminiscence. Clin Lymphoma 2:148–154PubMedGoogle Scholar
  3. 3.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedGoogle Scholar
  4. 4.
    Yang XM, Xing JL, Liao CG, Yao XY, Li Y, Chen ZN (2008) High efficiency reconstitution of a human-mouse chimeric Fab of CAb-1 antibody specific to human colon cancer. Scand J Immunol 68:12–21PubMedGoogle Scholar
  5. 5.
    Li S, Yang J, Urban FA, MacGregor JN, Hughes DP, Chang AE, McDonagh KT, Li Q (2008) Genetically engineered T cells expressing a HER2-specific chimeric receptor mediate antigen-specific tumor regression. Cancer Gene Ther 15:382–392PubMedGoogle Scholar
  6. 6.
    Hara M, Nakanishi H, Tsujimura K, Matsui M, Yatabe Y, Manabe T, Tatematsu M (2008) Interleukin-2 potentiation of cetuximab antitumor activity for epidermal growth factor receptor-overexpressing gastric cancer xenografts through antibody-dependent cellular cytotoxicity. Cancer Sci 99:1471–1478PubMedGoogle Scholar
  7. 7.
    Tsurushita N, Park M, Pakabunto K, Ong K, Avdalovic A, Fu H, Jia A, Vasquez M, Kumar S (2004) Humanization of a chicken anti-IL-12 monoclonal antibody. J Immunol Methods 295:9–19PubMedGoogle Scholar
  8. 8.
    Komminoth P, Roth J, Lackie P, Bitter-Suermann D, Heitz P (1991) Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids. Am J Pathol 139:297–304PubMedGoogle Scholar
  9. 9.
    Heitz PU, Roth J, Zuber C, Komminoth P (1991) Markers for neural and endocrine cells in pathology. In: Gratzl M, Langley L (eds) Markers for neural and endocrine cells. VCH, Weinheim, pp 203–216Google Scholar
  10. 10.
    Werner M, Kaloutsi V, Walter K, Buhr T, Bernhards J, Georgii A (1992) Immunohistochemical examination of routinely processed bone marrow biopsies. Pathol Res Pract 188:707–713PubMedGoogle Scholar
  11. 11.
    Werner M, von Waasielewski R, Komminoth P (1996) Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochem Cell Biol 105:253–260PubMedGoogle Scholar
  12. 12.
    von Wasielewski R, Werner M, Nolte M, Wilkens L, Georgii A (1994) Effects of antigen retrieval by microwave heating in formalin-fixed tissue sections on a broad panel of antibodies. Histochemistry 102:165–172Google Scholar
  13. 13.
    Roth J, Saremaslani P, Zuber C (1992) Versatility of anti-horseradish peroxidase antibody-gold complexes for cytochemistry and in-situ hybridization: preparation and application of soluble complexes with streptavidin-peroxidase conjugates and biotinylated antibodies. Histochemistry 98:229–236PubMedGoogle Scholar
  14. 14.
    Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 26:1074–1081PubMedGoogle Scholar
  15. 15.
    Roth J, Zuber C, Komminoth P, Sata T, Li WP, Heitz PU (1996) Applications of immunogold and lectin-gold labeling in tumor research and diagnosis. Histochem Cell Biol 106:131–148PubMedGoogle Scholar
  16. 16.
    Seelentag WK, Komminoth P, Saremaslani P, Heitz PU, Roth J (1996) CD44 isoform expression in the diffuse neuroendocrine system. I. Normal cells and hyperplasia. Histochem Cell Biol 106:543–550PubMedGoogle Scholar
  17. 17.
    Roth J, Komminoth P, Heitz PU (1995) Topographic abnormalities of proinsulin to insulin conversion in functioning human insulinomas. Comparison of immunoelectron microscopic and clinical data. Am J Pathol 147:489–502PubMedGoogle Scholar
  18. 18.
    Komminoth P, Seelentag WK, Saremaslani P, Heitz PU, Roth J (1996) CD44 isoform expression in the diffuse neuroendocrine system. II. Benign and malignant tumors. Histochem Cell Biol 106:551–562PubMedGoogle Scholar
  19. 19.
    Sternberger LA, Hardy PJ, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333PubMedGoogle Scholar
  20. 20.
    Cordell JL, Falini B, Erber WN, Ghosh AK, Abdulaziz Z, MacDonald S, Pulford KA, Stein H, Mason DY (1984) Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32:219–229PubMedGoogle Scholar
  21. 21.
    Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  22. 22.
    Komminoth P (1996) Detection of mRNA in tissue sections using digoxigenin-labeled RNA and oligonucleotide probes. In: Boehringer Mannheim Corporation (ed) Nonradioactive in situ hybridization application manual, Boehringer Mannheim Corporation, Mannheim, Germany, pp 126–135Google Scholar
  23. 23.
    Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction products. J Histochem Cytochem 29:775PubMedGoogle Scholar
  24. 24.
    Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463PubMedGoogle Scholar
  25. 25.
    Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125:279–285PubMedGoogle Scholar
  26. 26.
    Speel EJ, Hopman AH, Komminoth P (2006) Tyramide signal amplification for DNA and mRNA in situ hybridization. Methods Mol Biol 326:33–60PubMedGoogle Scholar
  27. 27.
    Komminoth P, Werner M (1997) Target and signal amplification: approaches to increase the sensitivity of in situ hybridization. Histochem Cell Biol 108:325–333PubMedGoogle Scholar
  28. 28.
    Speel EJM, Saremaslani P, Roth J, Hopman AHN, Komminoth P (1998) Improved mRNA in situ hybridization on formaldehyde-fixed and paraffin-embedded tissue using signal amplification with different haptenized tyramides. Histochem Cell Biol 110:571–577PubMedGoogle Scholar
  29. 29.
    Speel EJ, Hopman AH, Komminoth P (2000) Signal amplification for DNA and mRNA. Methods Mol Biol 123:195–216PubMedGoogle Scholar
  30. 30.
    Richter T, Nahrig J, Komminoth P, Kowolik J, Werner M (1999) Protocol for ultrarapid immunostaining of frozen sections. J Clin Pathol 52:461–463PubMedGoogle Scholar
  31. 31.
    Komminoth P, Roth J, Saremaslani P, Schröder S, Heitz PU (1995) Overlapping expression of immunohistochemical markers and synaptophysin mRNA in pheochromocytomas and adrenocortical carcinomas. Implications for the differential diagnosis of adrenal gland tumors. Lab Invest 72:424–431PubMedGoogle Scholar
  32. 32.
    Wierup N, Bjorkqvist M, Westrom B, Pierzynowski S, Sundler F, Sjolund K (2007) Ghrelin and motilin are cosecreted from a prominent endocrine cell population in the small intestine. J Clin Endocrinol Metab 92:3573–3581PubMedGoogle Scholar
  33. 33.
    DeLellis R, Lloyd R, Heitz P, Eng C (2004) Pathology and genetics: tumours of endocrine organs. WHO classification of tumors. IARC, LyonGoogle Scholar
  34. 34.
    Solcia E, Klöppel G, Sobin LH (2000) Histological typing of endocrine tumours. WHO. Springer, BerlinGoogle Scholar
  35. 35.
    Jin L, Hemperly JJ, Lloyd RV (1991) Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues. Am J Pathol 138:961–969PubMedGoogle Scholar
  36. 36.
    Komminoth P, Roth J, Saremaslani P, Matias-Guiu X, Wolfe HJ, Heitz PU (1994) Polysialic acid of the neural cell adhesion molecule in the human thyroid: a marker for medullary thyroid carcinoma and primary C-cell hyperplasia. Am J Surg Path 18:399–411PubMedGoogle Scholar
  37. 37.
    Erickson LA, Jin L, Wollan P, Thompson GB, van Heerden JA, Lloyd RV (1999) Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol 23:288–295PubMedGoogle Scholar
  38. 38.
    Heitz PU, von Herbay G, Kloppel G, Komminoth P, Kasper M, Hofler H, Muller KM, Oberholzer M (1987) The expression of subunits of human chorionic gonadotropin (hCG) by nontrophoblastic, nonendocrine, and endocrine tumors. Am J Clin Pathol 88:467–472PubMedGoogle Scholar
  39. 39.
    Oliveira AM, Tazelaar HD, Myers JL, Erickson LA, Lloyd RV (2001) Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol 25:815–819PubMedGoogle Scholar
  40. 40.
    Schröder S, Komminoth P, Padberg B, Heitz PU (1995) Morphological typing, evaluation of tumor dignity and prognosis and etiologic classification of adrenomedullary and adrenocortical neoplasias. Pathologe 16:307–314PubMedGoogle Scholar
  41. 41.
    Sano T (2000) The dispersed neuroendocrine system. In: Stefaneanu L, Sasano H, Kovacs K (eds) Molecular and cellular endocrine pathology. Arnold, London, pp 353–373Google Scholar
  42. 42.
    Lloyd RV (2001) Applications of immunohistochemistry in the diagnosis of endocrine lesions. In: Lloyd RV (ed) Morphology methods: cell and molecular biology techniques. Humana Press, Totowa, NJ, pp 361–374Google Scholar
  43. 43.
    Schmitt AM, Riniker F, Anlauf M, Schmid S, Soltermann A, Moch H, Heitz PU, Kloppel G, Komminoth P, Perren A (2008) Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 32:420–425PubMedGoogle Scholar
  44. 44.
    Schmitt A, Saremaslani P, Schmid S, Rousson V, Montani M, Schmid DM, Heitz PU, Komminoth P, Perren A (2006) IGFII and MIB1 immunohistochemistry is helpful for the differentiation of benign from malignant adrenocortical tumours. Histopathology 49:298–307PubMedGoogle Scholar
  45. 45.
    Erickson LA, Jin L, Wollan PC, Thompson GB, van Heerden J, Lloyd RV (1998) Expression of p27kip1 and Ki-67 in benign and malignant thyroid tumors. Mod Pathol 11:169–174PubMedGoogle Scholar
  46. 46.
    Schmitt AM, Anlauf M, Rousson V, Schmid S, Kofler A, Riniker F, Bauersfeld J, Barghorn A, Probst-Hensch NM, Moch H, Heitz PU, Kloeppel G, Komminoth P, Perren A (2007) WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol 31:1677–1682PubMedGoogle Scholar
  47. 47.
    Kimura N, Pilichowska M, Date F, Kimura I, Schindler M (1999) Immunohistochemical expression of somatostatin type 2A receptor in neuroendocrine tumors. Clin Cancer Res 5:3483–3487PubMedGoogle Scholar
  48. 48.
    Yuan W, Wang W, Cui B, Su T, Ge Y, Jiang L, Zhou W, Ning G (2008) Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry. Endocr Relat Cancer 15:343–350PubMedGoogle Scholar
  49. 49.
    Chetty R, Serra S, Asa SL (2008) Loss of membrane localization and aberrant nuclear E-cadherin expression correlates with invasion in pancreatic endocrine tumors. Am J Surg Pathol 32:413–419PubMedGoogle Scholar
  50. 50.
    Cleary S, Phillips JK, Huynh TT, Pacak K, Fliedner S, Elkahloun AG, Munson P, Worrell RA, Eisenhofer G (2007) Chromogranin a expression in phaeochromocytomas associated with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Horm Metab Res 39:876–883PubMedGoogle Scholar
  51. 51.
    de Sa SV, Correa-Giannella ML, Machado MC, Krogh K, de Almeida MQ, Albergaria Pereira MA, Coelho Siqueira SA, Patzina RA, Ibuki FS, Sogayar MC, Giannella-Neto D (2007) Serpin peptidase inhibitor clade A member 1 as a potential marker for malignancy in insulinomas. Clin Cancer Res 13:5322–5330PubMedGoogle Scholar
  52. 52.
    Deschamps L, Handra-Luca A, O’Toole D, Sauvanet A, Ruszniewski P, Belghiti J, Bedossa P, Couvelard A (2006) CD10 expression in pancreatic endocrine tumors: correlation with prognostic factors and survival. Hum Pathol 37:802–808PubMedGoogle Scholar
  53. 53.
    Li AF, Tsay SH, Liang WY, Li WY, Chen JY (2006) Clinical significance of p16INK4a and p53 overexpression in endocrine tumors of the gastrointestinal tract. Am J Clin Pathol 126:856–865PubMedGoogle Scholar
  54. 54.
    Papouchado B, Erickson LA, Rohlinger AL, Hobday TJ, Erlichman C, Ames MM, Lloyd RV (2005) Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Pathol 18:1329–1335PubMedGoogle Scholar
  55. 55.
    Portela-Gomes GM, Stridsberg M, Grimelius L, Rorstad O, Janson ET (2007) Differential expression of the five somatostatin receptor subtypes in human benign and malignant insulinomas – predominance of receptor subtype 4. Endocr Pathol 18:79–85PubMedGoogle Scholar
  56. 56.
    van Nederveen FH, Perren A, Dannenberg H, Petri BJ, Dinjens WN, Komminoth P, de Krijger RR (2006) PTEN gene loss, but not mutation, in benign and malignant phaeochromocytomas. J Pathol 209:274–280PubMedGoogle Scholar
  57. 57.
    Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S, Lees JA, Heitz PU, Eng C (2000) Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 157:1097–1103PubMedGoogle Scholar
  58. 58.
    Gall G, Pardue M (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–381PubMedGoogle Scholar
  59. 59.
    Werner M, Wilkens L, Aubele M, Nolte M, Zitzelsberger H, Komminoth P (1997) Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH). Histochem Cell Biol 108:381–390PubMedGoogle Scholar
  60. 60.
    Höfler H, Childers H, Montminy MR, Lechan RM, Goodmann RH, Wolfe HJ (1986) In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes. Histochem J 18:597–604Google Scholar
  61. 61.
    Osamura RY, Itoh Y, Matsuno A (2000) Applications of plastic embedding to electron microscopic immunocytochemistry and in situ hybridization in observations of production and secretion of peptide hormones. J Histochem Cytochem 48:885–891PubMedGoogle Scholar
  62. 62.
    Young ID, Ailles L, Deugau K, Kisilevsky R (1991) Transcription of cRNA for in situ hybridiziation from polymerase chain reaction-amplified DNA. Lab Invest 64:709–712PubMedGoogle Scholar
  63. 63.
    Gall J, Pardue M (1971) Nucleic acid hybridization in cytological preparations. Methods Enzymol 38:470–480Google Scholar
  64. 64.
    Komminoth P, Merk FB, Leav I, Wolfe HJ, Roth J (1992) Comparison of 35S- and digoxigenin-labeled RNA and oligonucleotide probes for in situ hybridization. Expression of mRNA of the seminal vesicle secretion protein II and androgen receptor genes in the rat prostate. Histochemistry 98:217–228PubMedGoogle Scholar
  65. 65.
    Komminoth P (1992) Digoxigenin as an alternative probe labeling for in-situ hybridization. Diagn Mol Pathol 1:142–150PubMedGoogle Scholar
  66. 66.
    Sperry A, Jin L, Lloyd RV (1996) Microwave treatment enhances detection of RNA and DNA by in situ hybridization. Diagn Mol Pathol 5:291–296PubMedGoogle Scholar
  67. 67.
    Long AA, Mueller J, Andre-Schwartz J, Barrett K, Schwartz R, Wolfe H (1992) High-specificity in-situ hybridization: methods and application. Diagn Mol Pathol 1:45–57PubMedGoogle Scholar
  68. 68.
    Werner M, Wilkens L, Nasarek A, Tchinda J, Komminoth P (1997) Detection of karyotype changes in interphase cells: oligonucleotide-primed in situ labelling versus fluorescence in situ hybridization. Virchows Arch 430:381–387PubMedGoogle Scholar
  69. 69.
    Haase AT, Retzel EF, Staskus KA (1990) Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci USA 87:4971–4975PubMedGoogle Scholar
  70. 70.
    Ray R, Komminoth P, Machado M, Wolfe HJ (1991) Combined polymerase chain reaction and in-situ hybridization for the detection of single copy genes and viral genomic sequences in intact cells. Mod Pathol 4:124AGoogle Scholar
  71. 71.
    Komminoth P, Long AA, Ray R, Wolfe HJ (1992) In situ polymerase chain reaction detection of viral DNA, single copy genes and gene rearrangements in cell suspensions and cytospins. Diagn Mol Pathol 1:85–97PubMedGoogle Scholar
  72. 72.
    Nuovo G, MacConnell P, Forde A, Delvenne P (1991) Detection of human papillomavirus DNA in formalin-fixed tissues by in situ hybridization after amplification by polymerase chain reaction. Am J Pathol 139:847–854PubMedGoogle Scholar
  73. 73.
    Spann W, Pachmann K, Zabnienska H, Pielmeier A, Emmerich B (1991) In situ amplification of single copy gene segments in individual cells by the polymerase chain reaction. Infection 19:242–244PubMedGoogle Scholar
  74. 74.
    Komminoth P, Long AA (1993) In-situ polymerase chain reaction. An overview of methods, applications and limitations of a new molecular technique. Virchows Arch B Cell Pathol Incl Mol Pathol 64:67–73PubMedGoogle Scholar
  75. 75.
    Long AA, Komminoth P, Lee E, Wolfe HJ (1993) Comparison of indirect and direct in-situ polymerase chain reaction in cell preparations and tissue sections. Detection of viral DNA, gene rearrangements and chromosomal translocations. Histochemistry 99:151–162PubMedGoogle Scholar
  76. 76.
    Komminoth P, Long AA (1995) In-situ polymerase chain reaction – methodology, applications and non-specific pathways. In: Boehringer Mannheim Corporation (ed) PCR application manual, Boehringer Mannheim Corporation, Mannheim, Germany, pp 97–106Google Scholar
  77. 77.
    Komminoth P, Long AA (1995) In situ polymerase chain reaction and its applications to the study of endocrine diseases. Endocr Pathol 6:167–171Google Scholar
  78. 78.
    Embretson J, Zupancic M, Beneke J, Till M, Wolinsky S, Ribas J, Burke A, Haase A (1993) Analysis of human immunodeficiency virus-infected tissues by amplification and in situ hybridization reveals latent and permissive infections at single-cell resolution. Proc Natl Acad Sci USA 90:357–361PubMedGoogle Scholar
  79. 79.
    Long AA, Komminoth P (1997) In situ polymerase chain reaction: an overview. In: Gosden JR (ed) PRINS and in situ PCR protocols. Methods in molecular biology. Humana, Totowa, NJ, pp 141–161Google Scholar
  80. 80.
    Long AA, Komminoth P, Wolfe HJ (1992) Detection of HIV provirus by in situ polymerase chain reaction (letter). N Engl Med J 327:1529Google Scholar
  81. 81.
    Zaki SR, Heneine W, Coffield LM, Greer PW, Sinha SD, Folks TM (1994) In-situ polymerase chain reaction: applications and current limitations. AIDS 8:1186–1188PubMedGoogle Scholar
  82. 82.
    Höfler H (1993) In situ polymerase chain reaction: toy or tool? Histochemistry 99:103–104PubMedGoogle Scholar
  83. 83.
    Höfler H, Pütz B, Mueller J, Neubert W, Sutter G, Gais P (1995) In situ amplification of measles virus RNA by the self-sustained sequence replication reaction. Lab Invest 73:577–585PubMedGoogle Scholar
  84. 84.
    Zehbe I, Hacker GW, Sällström JF, Rylander E, Wilander E (1994) Self-sustained sequence replication-based amplification (3SR) for the in-situ detection of mRNA in cultured cells. Cell Vision 1:20–24Google Scholar
  85. 85.
    Mogensen J, Kolvraa S, Hindkjaer J, Petersen S, Koch J, Nygaard M, Jensen T, Gregersen N, Junker S, Bolund L (1991) Non-radioactive sequence specific detection of RNA in situ by primed in situ labelling (PRINS). Exp Cell Res 196:92–98PubMedGoogle Scholar
  86. 86.
    Raap AK, Van de Corput MPC, Vervenne RAW, van Gijlswijk RPM, Tanke HJ, Wiegant J (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum Mol Genet 4:529–534PubMedGoogle Scholar
  87. 87.
    Qian X, Bauer RA, Xu HS, Lloyd RV (2001) In situ hybridization detection of calcitonin mRNA in routinely fixed, paraffin-embedded tissue sections: a comparison of different types of probes combined with tyramide signal amplification. Appl Immunohistochem Mol Morphol 9:61–69PubMedGoogle Scholar
  88. 88.
    Hopman AHN, Ramaekers FCS, Speel EJM (1998) Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for in situ hybridization using CARD-amplification. J Histochem Cytochem 46:771–777PubMedGoogle Scholar
  89. 89.
    Speel EJ, Hopman AH, Komminoth P (1999) Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J Histochem Cytochem 47:281–288PubMedGoogle Scholar
  90. 90.
    Ikeo Y, Sakurai A, Suzuki R, Zhang MX, Koizumi S, Takeuchi Y, Yumita W, Nakayama J, Hashizume K (2000) Proliferation-associated expression of the MEN1 gene as revealed by in situ hybridization: possible role of the menin as a negative regulator of cell proliferation under DNA damage. Lab Invest 80:797–804PubMedGoogle Scholar
  91. 91.
    Jacobsson G, Bean AJ, Scheller RH, Juntti-Berggren L, Deeney JT, Berggren PO, Meister B (1994) Identification of synaptic proteins and their isoform mRNAs in compartments of pancreatic endocrine cells. Proc Natl Acad Sci USA 91:12487–12491PubMedGoogle Scholar
  92. 92.
    McKenzie KJ, Hind C, Farquharson MA, McGill M, Foulis AK (1997) Demonstration of insulin production and storage in insulinomas by in situ hybridization and immunocytochemistry. J Pathol 181:218–222PubMedGoogle Scholar
  93. 93.
    Farnebo F, Enberg U, Grimelius L, Backdahl M, Schalling M, Larsson C, Farnebo LO (1997) Tumor-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab 82:3481–3486PubMedGoogle Scholar
  94. 94.
    Filipsson K, Sundler F, Hannibal J, Ahren B (1998) PACAP and PACAP receptors in insulin producing tissues: localization and effects. Regul Pept 74:167–175PubMedGoogle Scholar
  95. 95.
    Luts L, Bergenfelz A, Alumets J, Sundler F (1997) Parathyroid function and histology in patients with parathyroid adenoma: correlation of clinical and morphologic findings. World J Surg 21:553–563PubMedGoogle Scholar
  96. 96.
    Lloyd RV, Jin L (1995) In situ hybridization analysis of chromogranin A and B mRNAs in neuroendocrine tumors with digoxigenin-labeled oligonucleotide probe cocktails. Diagn Mol Pathol 4:143–151PubMedGoogle Scholar
  97. 97.
    Lloyd RV, Fields K, Jin L, Horvath E, Kovacs K (1990) Analysis of endocrine active and clinically silent corticotropic adenomas by in situ hybridization. Am J Pathol 137:479–488PubMedGoogle Scholar
  98. 98.
    DeLellis RA, Wolfe HJ (1987) Contributions of immunohistochemical and molecular biological techniques to endocrine pathology. J Histochem Cytochem 35:1347–1351PubMedGoogle Scholar
  99. 99.
    Lloyd RV, Jin L, Kulig E, Fields K (1992) Molecular approaches for the analysis of chromogranins and secretogranins. Diagn Mol Pathol 1:2–15PubMedGoogle Scholar
  100. 100.
    Boultwood J, Wynford-Thomas D, Richards GP, Craig RK, Williams ED (1990) In-situ analysis of calcitonin and CGRP expression in medullary thyroid carcinoma. Clin Endocrinol (Oxf) 33:381–390Google Scholar
  101. 101.
    Hofler H, Putz B, Ruhri C, Wirnsberger G, Klimpfinger M, Smolle J (1987) Simultaneous localization of calcitonin mRNA and peptide in a medullary thyroid carcinoma. Virchows Arch B Cell Pathol Incl Mol Pathol 54:144–151PubMedGoogle Scholar
  102. 102.
    Kendall CH, Roberts PA, Pringle JH, Lauder I (1991) The expression of parathyroid hormone messenger RNA in normal and abnormal parathyroid tissue. J Pathol 165:111–118PubMedGoogle Scholar
  103. 103.
    Baz E, Saeger W, Uhlig H, Fehr S, Ludecke DK (1991) HGH, PRL and beta HCG/beta LH gene expression in clinically inactive pituitary adenomas detected by in situ hybridization. Virchows Arch A Pathol Anat Histopathol 418:405–410PubMedGoogle Scholar
  104. 104.
    Larsson LI, Hougaard DM (1991) Combined non-radioactive detection of peptide hormones and their mRNA’s in endocrine cells. Histochemistry 96:375–380PubMedGoogle Scholar
  105. 105.
    Trembleau A, Roche D, Calas A (1993) Combination of non-radioactive and radioactive in situ hybridization with immunohistochemistry: a new method allowing the simultaneous detection of two mRNAs and one antigen in the same brain tissue section. J Histochem Cytochem 41:489–498PubMedGoogle Scholar
  106. 106.
    Volante M, Allia E, Gugliotta P, Funaro A, Broglio F, Deghenghi R, Muccioli G, Ghigo E, Papotti M (2002) Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. J Clin Endocrinol Metab 87:1300–1308PubMedGoogle Scholar
  107. 107.
    Chaudhry A, Funa K, Oberg K (1993) Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol 32:107–114PubMedGoogle Scholar
  108. 108.
    Cunningham JL, Lopez-Egido JR, Janson ET, Eriksson B, Oberg K, Gobl AE (2000) Transmembrane protein tyrosine phosphatase IA-2 (ICA512) is expressed in human midgut carcinoids but is not detectable in normal enterochromaffin cells. J Endocrinol 164:315–322PubMedGoogle Scholar
  109. 109.
    Hoog A, Kjellman M, Nordqvist AC, Hoog CM, Juhlin C, Falkmer S, Schalling M, Grimelius L (2001) Insulin-like growth factor-II in endocrine pancreatic tumours. Immunohistochemical, biochemical and in situ hybridization findings. APMIS 109:127–140PubMedGoogle Scholar
  110. 110.
    Hunziker E, Stein M (2000) Nestin-expressing cells in the pancreatic islets of Langerhans. Biochem Biophys Res Commun 271:116–119PubMedGoogle Scholar
  111. 111.
    Lemmens IH, Forsberg L, Pannett AA, Meyen E, Piehl F, Turner JJ, Van de Ven WJ, Thakker RV, Larsson C, Kas K (2001) Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 286:426–431PubMedGoogle Scholar
  112. 112.
    Missiaglia E, Moore PS, Williamson J, Lemoine NR, Falconi M, Zamboni G, Scarpa A (2002) Sex chromosome anomalies in pancreatic endocrine tumors. Int J Cancer 98:532–538PubMedGoogle Scholar
  113. 113.
    Barghorn A, Komminoth P, Bachmann D, Rutimann K, Saremaslani P, Muletta-Feurer S, Perren A, Roth J, Heitz PU, Speel EJ (2001) Deletion at 3p25.3-p23 is frequently encountered in endocrine pancreatic tumours and is associated with metastatic progression. J Pathol 194:451–458PubMedGoogle Scholar
  114. 114.
    Speel EJ, Scheidweiler AF, Zhao J, Matter C, Saremaslani P, Roth J, Heitz PU, Komminoth P (2001) Genetic evidence for early divergence of small functioning and nonfunctioning endocrine pancreatic tumors: gain of 9Q34 is an early event in insulinomas. Cancer Res 61:5186–5192PubMedGoogle Scholar
  115. 115.
    Speel EJ, Richter J, Moch H, Egenter C, Saremaslani P, Rütimann K, Zhao J, Barghorn A, Roth J, Heitz PU, Komminoth P (1999) Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am J Pathol 155:1787–1794PubMedGoogle Scholar
  116. 116.
    Barghorn A, Speel EJ, Farspour B, Saremaslani P, Schmid S, Perren A, Roth J, Heitz PU, Komminoth P (2001) Putative tumor suppressor loci at 6q22 and 6q23-q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Am J Pathol 158:1903–1911PubMedGoogle Scholar
  117. 117.
    Perren A, Anlauf M, Henopp T, Rudolph T, Schmitt A, Raffel A, Gimm O, Weihe E, Knoefel WT, Dralle H, Heitz PU, Komminoth P, Kloppel G (2007) Multiple endocrine neoplasia type 1 (MEN1): loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters but not in islet hyperplasia of the pancreas. J Clin Endocrinol Metab 92:1118–1128PubMedGoogle Scholar
  118. 118.
    Corvi R, Martinez-Alfaro M, Harach HR, Zini M, Papotti M, Romeo G (2001) Frequent RET rearrangements in thyroid papillary microcarcinoma detected by interphase fluorescence in situ hybridization. Lab Invest 81:1639–1645PubMedGoogle Scholar
  119. 119.
    Salassidis K, Bruch J, Zitzelsberger H, Lengfelder E, Kellerer AM, Bauchinger M (2000) Translocation t(10;14)(q11.2:q22.1) fusing the kinetin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res 60:2786–2789PubMedGoogle Scholar
  120. 120.
    Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326PubMedGoogle Scholar
  121. 121.
    Finelli P, Giardino D, Rizzi N, Buiatiotis S, Virduci T, Franzin A, Losa M, Larizza L (2000) Non-random trisomies of chromosomes 5, 8 and 12 in the prolactinoma sub-type of pituitary adenomas: conventional cytogenetics and interphase FISH study. Int J Cancer 86:344–350PubMedGoogle Scholar
  122. 122.
    Kontogeorgos G, Kapranos N, Orphanidis G, Rologis D, Kokka E (1999) Molecular cytogenetics of chromosome 11 in pituitary adenomas: a comparison of fluorescence in situ hybridization and DNA ploidy study. Hum Pathol 30:1377–1382PubMedGoogle Scholar
  123. 123.
    Huang SC, Koch CA, Vortmeyer AO, Pack SD, Lichtenauer UD, Mannan P, Lubensky IA, Chrousos GP, Gagel RF, Pacak K, Zhuang Z (2000) Duplication of the mutant RET allele in trisomy 10 or loss of the wild-type allele in multiple endocrine neoplasia type 2-associated pheochromocytomas. Cancer Res 60:6223–6226PubMedGoogle Scholar
  124. 124.
    Chaurand P, Sanders ME, Jensen RA, Caprioli RM (2004) Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 165:1057–1068PubMedGoogle Scholar
  125. 125.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833PubMedGoogle Scholar
  126. 126.
    Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedGoogle Scholar
  127. 127.
    Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, White BC, Roberts JR, Edgerton M, Gonzalez A, Nadaf S, Moore JH, Caprioli RM, Carbone DP (2003) Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362:433–439PubMedGoogle Scholar
  128. 128.
    Schwartz SA, Weil RJ, Thompson RC, Shyr Y, Moore JH, Toms SA, Johnson MD, Caprioli RM (2005) Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res 65:7674–7681PubMedGoogle Scholar
  129. 129.
    Cornett DS, Mobley JA, Dias EC, Andersson M, Arteaga CL, Sanders ME, Caprioli RM (2006) A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol Cell Proteomics 5:1975–1983PubMedGoogle Scholar
  130. 130.
    Lemaire R, Menguellet SA, Stauber J, Marchaudon V, Lucot JP, Collinet P, Farine MO, Vinatier D, Day R, Ducoroy P, Salzet M, Fournier I (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res 6:4127–4134PubMedGoogle Scholar
  131. 131.
    Walch A, Rauser S, Deininger SO, Hofler H (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 130:421–434PubMedGoogle Scholar
  132. 132.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760PubMedGoogle Scholar
  133. 133.
    Minerva L, Clerens S, Baggerman G, Arckens L (2008) Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics 8:3763–3774PubMedGoogle Scholar
  134. 134.
    Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedGoogle Scholar
  135. 135.
    Whetsell L, Maw G, Nadon N, Ringer DP, Schaefer FV (1992) Polymerase chain reaction microanalysis of tumors from stained histological slides. Oncogene 7:2355–2361PubMedGoogle Scholar
  136. 136.
    Perren A, Roth J, Muletta-Feurer S, Saremaslani P, Speel EJ, Heitz PU, Komminoth P (1998) Clonal analysis of sporadic pancreatic endocrine tumours. J Pathol 186:363–371PubMedGoogle Scholar
  137. 137.
    Srinivasan R (1986) Ablation of polymers and biological tissue by ultraviolet lasers. Science 234:559–565PubMedGoogle Scholar
  138. 138.
    Greulich KO, Weber G (1992) The light microscope on its way from an analytical to a preparative tool. J Microsc 162:127–151Google Scholar
  139. 139.
    de With A, Greulich KO (1995) Wavelength dependence of laser-induced DNA damage in lymphocytes observed by single-cell gel electrophoresis. J Photochem Photobiol B 30:71–76PubMedGoogle Scholar
  140. 140.
    Becker I, Becker KF, Rohrl MH, Minkus G, Schutze K, Hofler H (1996) Single-cell mutation analysis of tumors from stained histologic slides. Lab Invest 75:801–807PubMedGoogle Scholar
  141. 141.
    Schutze K, Lahr G (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16:737–742PubMedGoogle Scholar
  142. 142.
    Bohm M, Wieland I, Schutze K, Rubben H (1997) Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol 151:63–67PubMedGoogle Scholar
  143. 143.
    Volante M, Papotti M, Roth J, Saremaslani P, Speel EJ, Lloyd RV, Carney JA, Heitz PU, Bussolati G, Komminoth P (1999) Mixed medullary-follicular thyroid carcinoma. Molecular evidence for a dual origin of tumor components. Am J Pathol 155:1499–1509PubMedGoogle Scholar
  144. 144.
    Espina V, Heiby M, Pierobon M, Liotta L (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7:647–657PubMedGoogle Scholar
  145. 145.
    Burton MP, Schneider BG, Brown R, Escamilla-Ponce N, Gulley ML (1998) Comparison of histologic stains for use in PCR analysis of microdissected, paraffin-embedded tissues. Biotechniques 24:86–92PubMedGoogle Scholar
  146. 146.
    Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, Raffeld M (1999) Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154:61–66PubMedGoogle Scholar
  147. 147.
    Ponten F, Williams C, Ling G, Ahmadian A, Nister M, Lundeberg J, Ponten J, Uhlen M (1997) Genomic analysis of single cells from human basal cell cancer using laser-assisted capture microscopy. Mutat Res 382:45–55PubMedGoogle Scholar
  148. 148.
    Hiller T, Snell L, Watson PH (1996) Microdissection RT-PCR analysis of gene expression in pathologically defined frozen tissue sections. Biotechniques 21:38–40, 42, 44Google Scholar
  149. 149.
    Aubele M, Zitzelsberger H, Schenck U, Walch A, Hofler H, Werner M (1998) Distinct cytogenetic alterations in squamous intraepithelial lesions of the cervix revealed by laser-assisted microdissection and comparative genomic hybridization. Cancer 84:375–379PubMedGoogle Scholar
  150. 150.
    Goldsworthy SM, Stockton PS, Trempus CS, Foley JF, Maronpot RR (1999) Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol Carcinog 25:86–91PubMedGoogle Scholar
  151. 151.
    Lassmann S, Kreutz C, Schoepflin A, Hopt U, Timmer J, Werner M (2009) A novel approach for reliable microarray analysis of microdissected tumor cells from formalin-fixed and paraffin-embedded colorectal cancer resection specimens. J Mol Med 87:211–224PubMedGoogle Scholar
  152. 152.
    Backx L, Thoelen R, Van Esch H, Vermeesch JR (2008) Direct fluorescent labelling of clones by DOP PCR. Mol Cytogenet 1:3PubMedGoogle Scholar
  153. 153.
    Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson SM, Nordenskjold M, Pfragner R, Ponder BA (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263PubMedGoogle Scholar
  154. 154.
    Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H (2001) Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am J Pathol 158:419–429PubMedGoogle Scholar
  155. 155.
    Specht MC, Tucker ON, Hocever M, Gonzalez D, Teng L, Fahey TJ 3rd (2002) Cyclooxygenase-2 expression in thyroid nodules. J Clin Endocrinol Metab 87:358–363PubMedGoogle Scholar
  156. 156.
    Takano T, Hasegawa Y, Miyauchi A, Matsuzuka F, Yoshida H, Kuma K, Amino N (2001) Overexpression of kalpha1 tubulin mRNA in thyroid anaplastic carcinoma. Cancer Lett 168:51–55PubMedGoogle Scholar
  157. 157.
    Almeida MQ, Fragoso MC, Lotfi CF, Santos MG, Nishi MY, Costa MH, Lerario AM, Maciel CC, Mattos GE, Jorge AA, Mendonca BB, Latronico AC (2008) Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors. J Clin Endocrinol Metab 93:3524–3531PubMedGoogle Scholar
  158. 158.
    Bieche I, Franc B, Vidaud D, Vidaud M, Lidereau R (2001) Analyses of MYC, ERBB2, and CCND1 genes in benign and malignant thyroid follicular cell tumors by real-time polymerase chain reaction. Thyroid 11:147–152PubMedGoogle Scholar
  159. 159.
    Knerr I, Schuster S, Nomikos P, Buchfelder M, Dotsch J, Schoof E, Fahlbusch R, Rascher W (2001) Gene expression of adrenomedullin, leptin, their receptors and neuropeptide Y in hormone-secreting and non-functioning pituitary adenomas, meningiomas and malignant intracranial tumours in humans. Neuropathol Appl Neurobiol 27:215–222PubMedGoogle Scholar
  160. 160.
    Bhuiyan MM, Sato M, Murao K, Imachi H, Namihira H, Ishida T, Takahara J, Miyauchi A (2001) Differential expression of menin in various adrenal tumors. The role of menin in adrenal tumors. Cancer 92:1393–1401PubMedGoogle Scholar
  161. 161.
    Suwa T, Yang L, Hornsby PJ (2001) Telomerase activity in primary cultures of normal adrenocortical cells. J Endocrinol 170:677–684PubMedGoogle Scholar
  162. 162.
    Nabokikh A, Ilhan A, Bilban M, Gartner W, Vila G, Niederle B, Nielsen JH, Wagner O, Base W, Luger A, Wagner L (2007) Reduced TGF-beta1 expression and its target genes in human insulinomas. Exp Clin Endocrinol Diabetes 115:674–682PubMedGoogle Scholar
  163. 163.
    Lam KY, Leung PS (2002) Regulation and expression of a renin-angiotensin system in human pancreas and pancreatic endocrine tumours. Eur J Endocrinol 146:567–572PubMedGoogle Scholar
  164. 164.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  165. 165.
    Wilson RK, Chen C, Avdalovic N, Burns J, Hood L (1990) Development of an automated procedure for fluorescent DNA sequencing. Genomics 6:626–634PubMedGoogle Scholar
  166. 166.
    Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879PubMedGoogle Scholar
  167. 167.
    Görtz B, Roth J, Krähenmann A, de Krijger RR, Muletta-Feurer S, Rütimann K, Saremaslani P, Speel EJM, Heitz PU, Komminoth P (1999) Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol 154:429–436PubMedGoogle Scholar
  168. 168.
    Hiort O, Wodtke A, Struve D, Zöllner A, Sinnecker GHG (1994) Detection of point mutations in the androgen receptor gene using non-isotopic single strand conformation polymorphism analysis. Hum Mol Genet 3(7):1163–1166PubMedGoogle Scholar
  169. 169.
    Abrams ES, Murdaugh SE, Lerman LS (1990) Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gel electrophoresis and a GC clamp. Genomics 7:463–475PubMedGoogle Scholar
  170. 170.
    Liu W, Smith DI, Rechtzigel KJ, Thibodeau SN, James CD (1998) Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res 26:1396–1400PubMedGoogle Scholar
  171. 171.
    Kishi M, Tsukada T, Shimizu S, Futami H, Ito Y, Kanbe M, Obara T, Yamaguchi K (1998) A large germline deletion of the MEN1 gene in a family with multiple endocrine neoplasia type 1. Jpn J Cancer Res 89:1–5PubMedGoogle Scholar
  172. 172.
    Pack SD, Zbar B, Pak E, Ault DO, Humphrey JS, Pham T, Hurley K, Weil RJ, Park WS, Kuzmin I, Stolle C, Glenn G, Liotta LA, Lerman MI, Klausner RD, Linehan WM, Zhuang Z (1999) Constitutional von Hippel-Lindau (VHL) gene deletions detected in VHL families by fluorescence in situ hybridization. Cancer Res 59:5560–5564PubMedGoogle Scholar
  173. 173.
    Komminoth P, Muletta-Feurer S, Seelentag WKF, Roth J, Heitz PU (1996) Analysis of RET proto-oncogene mutations in Swiss families with multiple endocrine neoplasia type 2. Hered Cancer 108–118Google Scholar
  174. 174.
    Komminoth P (1997) Multiple endokrine Neoplasie Typ 1 und 2. Diagnostische Leitlinien und molekulare Pathologie 1997. Pathologe 18:286–300PubMedGoogle Scholar
  175. 175.
    Perren A, Komminoth P (2006) Familial pheochromocytomas and paragangliomas: stories from the sign-out room. Endocr Pathol 17:337–344PubMedGoogle Scholar
  176. 176.
    Timmers HJ, Kozupa A, Eisenhofer G, Raygada M, Adams KT, Solis D, Lenders JW, Pacak K (2007) Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 92:779–786PubMedGoogle Scholar
  177. 177.
    van der Harst E, de Krijger RR, Bruining HA, Lamberts SW, Bonjer HJ, Dinjes WN, Proye C, Koper JW, Bosman FT, Roth J, Heitz PU, Komminoth P (1998) Prognostic value of RET proto-oncogene point mutations in malignant and benign, sporadic phaeochromocytomas. Int J Cancer 79:537–540PubMedGoogle Scholar
  178. 178.
    Knudson AG Jr, Hethcote HW, Brown BW (1975) Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci USA 72:5116–5120PubMedGoogle Scholar
  179. 179.
    Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784PubMedGoogle Scholar
  180. 180.
    Cawkwell L, Bell SM, Lewis FA, Dixon MF, Taylor GR, Quirke P (1993) Rapid detection of allele loss in colorectal tumours using microsatellites and fluorescent DNA technology. Br J Cancer 67:1262–1267PubMedGoogle Scholar
  181. 181.
    Vageli D, Daniil Z, Dahabreh J, Karagianni E, Liloglou T, Koukoulis G, Gourgoulianis K (2006) Microsatellite instability and loss of heterozygosity at the MEN1 locus in lung carcinoid tumors: a novel approach using real-time PCR with melting curve analysis in histopathologic material. Oncol Rep 15:557–564PubMedGoogle Scholar
  182. 182.
    Kupka S, Haack B, Zdichavsky M, Mlinar T, Kienzle C, Bock T, Kandolf R, Kroeber SM, Konigsrainer A (2008) Large proportion of low frequency microsatellite-instability and loss of heterozygosity in pheochromocytoma and endocrine tumors detected with an extended marker panel. J Cancer Res Clin Oncol 134:463–471PubMedGoogle Scholar
  183. 183.
    Kidd M, Eick G, Shapiro MD, Camp RL, Mane SM, Modlin IM (2005) Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors. Cancer 103:229–236PubMedGoogle Scholar
  184. 184.
    House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Cameron JL, Hruban RH, Maitra A, Yeo CJ (2003) Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery 134:902–908 discussion 909PubMedGoogle Scholar
  185. 185.
    Görtz B, Roth J, Speel EJM, Krähenmann A, De Krijger RR, Matias-Guiu X, Muletta-Feurer S, Rütimann K, Saremaslani P, Heitz PU, Komminoth P (1999) MEN1 gene mutation analysis of sporadic adrenocortical lesions. Int J Cancer 80:373–379PubMedGoogle Scholar
  186. 186.
    Speel E, Meier D, Matter C, Muletta-Feurer S, van Asseldonk M, Roth J, Heitz P, Komminoth P (1999) Chromosome 11q losses in sporadic endocrine pancreatic tumors: another tumor suppressor gene telomeric of MEN1? Virchows Arch 435:219 (Abstract P-105)Google Scholar
  187. 187.
    Perren A, Schmid S, Saremaslani P, Barghorn A, Roth J, Heitz PU, Komminoth P (2001) The role of the succinate-dehydrogenase-D (SDHD) tumor suppressor gene on 11q23 in sporadic endocrine tumors. Verh Dtsch Ges Path 85:275–278Google Scholar
  188. 188.
    Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211PubMedGoogle Scholar
  189. 189.
    Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, Cremer T, Lichter P (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407PubMedGoogle Scholar
  190. 190.
    Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46PubMedGoogle Scholar
  191. 191.
    Zhao J, Roth J, Bode-Lesniewska B, Pfaltz M, Heitz PU, Komminoth P (2002) Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors. Genes Chromosomes Cancer 34:48–57PubMedGoogle Scholar
  192. 192.
    Jonkers YM, Claessen SM, Perren A, Schmid S, Komminoth P, Verhofstad AA, Hofland LJ, de Krijger RR, Slootweg PJ, Ramaekers FC, Speel EJ (2005) Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocr Relat Cancer 12:435–447PubMedGoogle Scholar
  193. 193.
    Kjellman P, Lagercrantz S, Hoog A, Wallin G, Larsson C, Zedenius J (2001) Gain of 1q and loss of 9q21.3-q32 are associated with a less favorable prognosis in papillary thyroid carcinoma. Genes Chromosomes Cancer 32:43–49PubMedGoogle Scholar
  194. 194.
    Frisk T, Zedenius J, Lundberg J, Wallin G, Kytola S, Larsson C (2001) CGH alterations in medullary thyroid carcinomas in relation to the RET M918T mutation and clinical outcome. Int J Oncol 18:1219–1225PubMedGoogle Scholar
  195. 195.
    Wilkens L, Benten D, Tchinda J, Brabant G, Potter E, Dralle H, von Wasielewski R (2000) Aberrations of chromosomes 5 and 8 as recurrent cytogenetic events in anaplastic carcinoma of the thyroid as detected by fluorescence in situ hybridisation and comparative genomic hybridisation. Virchows Arch 436:312–318PubMedGoogle Scholar
  196. 196.
    Komoike Y, Tamaki Y, Sakita I, Tomita N, Ohue M, Sekimoto M, Miyazaki M, Kadota M, Masuda N, Ooka M, Ohnishi T, Nakano Y, Kozaki T, Kobayashi T, Matsuura N, Ikeda T, Horii A, Monden M (1999) Comparative genomic hybridization defines frequent loss on 16p in human anaplastic thyroid carcinoma. Int J Oncol 14:1157–1162PubMedGoogle Scholar
  197. 197.
    Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K (1998) Comparison of benign and malignant follicular thyroid tumours by comparative genomic hybridization. Br J Cancer 78:1012–1017PubMedGoogle Scholar
  198. 198.
    Trautmann K, Thakker RV, Ellison DW, Ibrahim A, Lees PD, Harding B, Fischer C, Popp S, Bartram CR, Jauch A (2001) Chromosomal aberrations in sporadic pituitary tumors. Int J Cancer 91:809–814PubMedGoogle Scholar
  199. 199.
    Daniely M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, Goldman B, Friedman E (1998) Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 83:1801–1805PubMedGoogle Scholar
  200. 200.
    Dannenberg H, de Krijger RR, Zhao J, Speel EJM, Saremaslani P, Dinjens WNM, Mooj WJ, Roth J, Heitz PU, Komminoth P (2001) Differential loss of chromosome 11q in familial and sporadic parasympathetic paragangliomas detected by comparative genomic hybridization. Am J Pathol 158:1937–1942PubMedGoogle Scholar
  201. 201.
    Dannenberg H, Speel EJ, Zhao J, Saremaslani P, van Der Harst E, Roth J, Heitz PU, Bonjer HJ, Dinjens WN, Mooi WJ, Komminoth P, de Krijger RR (2000) Losses of chromosomes 1p and 3q are early genetic events in the development of sporadic pheochromocytomas. Am J Pathol 157:353–359PubMedGoogle Scholar
  202. 202.
    Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P (2000) Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer 28:145–152PubMedGoogle Scholar
  203. 203.
    Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR Jr, Elkahloun AG (1999) In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 59:5656–5661PubMedGoogle Scholar
  204. 204.
    Leethanakul C, Patel V, Gillespie J, Pallente M, Ensley JF, Koontongkaew S, Liotta LA, Emmert-Buck M, Gutkind JS (2000) Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19:3220–3224PubMedGoogle Scholar
  205. 205.
    Kim IJ, Kang HC, Park JH, Ku JL, Lee JS, Kwon HJ, Yoon KA, Heo SC, Yang HY, Cho BY, Kim SY, Oh SK, Youn YK, Park DJ, Lee MS, Lee KW, Park JG (2002) RET oligonucleotide microarray for the detection of RET mutations in multiple endocrine neoplasia type 2 syndromes. Clin Cancer Res 8:457–463PubMedGoogle Scholar
  206. 206.
    Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A (2001) Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA 98:15044–15049PubMedGoogle Scholar
  207. 207.
    Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS, Oyesiku NM (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86:3097–3107PubMedGoogle Scholar
  208. 208.
    Hodgson G, Hager JH, Volik S, Hariono S, Wernick M, Moore D, Nowak N, Albertson DG, Pinkel D, Collins C, Hanahan D, Gray JW (2001) Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat Genet 29:459–464PubMedGoogle Scholar
  209. 209.
    Kallioniemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10:657–662PubMedGoogle Scholar
  210. 210.
    Anlauf M, Garbrecht N, Bauersfeld J, Schmitt A, Henopp T, Komminoth P, Heitz P, Perren A, Klöppel G (2007) Hereditary neuroendocrine tumors of the gastroenteropancreatic system. Virchows Arch 451:29–38Google Scholar
  211. 211.
    Lyon M (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373PubMedGoogle Scholar
  212. 212.
    Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17:155–190PubMedGoogle Scholar
  213. 213.
    Tsukada M, Wada Y, Hamade N, Masuda H, Koizumi A (1991) Stable Lyonization of X-linked pgk-1 gene during aging in normal tissues and tumors of mice carrying Searle’s translocation. J Gerontol 46:B213–B216PubMedGoogle Scholar
  214. 214.
    Fialkow PJ (1977) Glucose-6-phosphate dehydrogenase (G-6-PD) markers in Burkitt lymphoma and other malignancies. Hamatol Bluttransfus 20:297–305Google Scholar
  215. 215.
    Vogelstein B, Fearon ER, Hamilton SR, Feinberg AP (1985) Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science 227:642–645PubMedGoogle Scholar
  216. 216.
    Tilley WD, Marcelli M, Wilson JD, McPhaul MJ (1989) Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci USA 86:327–331PubMedGoogle Scholar
  217. 217.
    Kubota T, Nonoyama S, Tonoki H, Masuno M, Imaizumi K, Kojima M, Wakui K, Shimadzu M, Fukushima Y (1999) A new assay for the analysis of X-chromosome inactivation based on methylation-specific PCR. Hum Genet 104:49–55PubMedGoogle Scholar
  218. 218.
    Harrison CN, Gale RE, Linch DC (1998) Quantification of X-chromosome inactivation patterns using RT-PCR of the polymorphic iduronate-2-sulphatase gene and correlation of the results obtained with DNA-based techniques. Leukemia 12:1834–1839PubMedGoogle Scholar
  219. 219.
    Derwahl M, Studer H (2002) Hyperplasia versus adenoma in endocrine tissues: are they different? Trends Endocrinol Metab 13:23–28PubMedGoogle Scholar
  220. 220.
    Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H (1994) Clonal analysis of parathyroid adenomas by means of the polymerase chain reaction. Cancer Lett 78:93–97PubMedGoogle Scholar
  221. 221.
    Arnold A, Staunton CE, Kim HG, Gaz RD, Kronenberg HM (1988) Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Engl J Med 318:658–662PubMedGoogle Scholar
  222. 222.
    Ferraris AM, Mangerini R, Gaetani GF, Romei C, Pinchera A, Pacini F (1997) Polyclonal origin of medullary carcinoma of the thyroid in multiple endocrine neoplasia type 2. Hum Genet 99:202–205PubMedGoogle Scholar
  223. 223.
    Diaz-Cano SJ, de Miguel M, Blanes A, Tashjian R, Wolfe HJ (2001) Germline RET 634 mutation positive MEN 2A-related C-cell hyperplasias have genetic features consistent with intraepithelial neoplasia. J Clin Endocrinol Metab 86:3948–3957PubMedGoogle Scholar
  224. 224.
    Levy A (2001) Monoclonality of endocrine tumours: what does it mean? Trends Endocrinol Metab 12:301–307PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paul Komminoth
    • 1
  • Axel Walch
  • Martin Werner
  • Aurel A. Perren
  1. 1.Institute of Pathology, Stadtspital TriemliZürichSwitzerland

Personalised recommendations