Advertisement

The Kinetics and Remodeling of HDL Particles: Lessons from Inborn Errors of Lipid Metabolism

  • Bela F. Asztalos
  • John Brunzell
Chapter

Abstract

Low levels of high density lipoprotein (HDL) cholesterol have been associated with an increased risk of coronary heart disease. In the previous chapter, we have described the presence of distinct apolipoprotein A-I containing HDL particles beginning with small discoidal precursor HDL particles known as preβ-1 HDL and ending with large mature spherical HDL known as alpha 1 HDL. In this chapter, we review our own concepts of the metabolism and remodeling of these HDL particles with emphasis on what we have learned from observations in various inherited disorders of lipoprotein metabolism. The roles of apolipoprotein A-I production, secretion, combination with phospholipids, cellular cholesterol and phospholipid efflux transporters, and cholesterol esterification will be reviewed. In addition, the roles of lipoprotein lipase, hepatic lipase, endothelial lipase, and cholesteryl ester transfer protein on HDL particle metabolism will be discussed as will those of scavenger receptor B1, apolipoprotein recycling, and renal clearance of apolipoprotein A-I. In addition, we will relate our finding to coronary heart disease risk.

Keywords

High Density Lipoprotein Cholesteryl Ester Cholesteryl Ester Transfer Protein Free Cholesterol Cholesterol Efflux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Miller NE, Thelle DS, Forde OH, Mjos OD (1977) The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet 1(8019):965–968CrossRefPubMedGoogle Scholar
  2. 2.
    Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DRJr, Bangdiwala S, Tyroler HA (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79(1):8–15PubMedGoogle Scholar
  3. 3.
    Assmann G, Schulte H (1992) Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Prospective Cardiovascular Münster study. Am J Cardiol 70(7):733–737CrossRefPubMedGoogle Scholar
  4. 4.
    Robins SJ, Collins D, Wittes JT, Papademetriou V, Deedwania PC, Schaefer EJ, McNamara JR, Kashyap ML, Hershman JM, Wexler LF, Rubins HB; VA-HIT Study Group. Veterans Affairs High-Density Lipoprotein Intervention Trial (2001) Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 285(12):1585–1591CrossRefPubMedGoogle Scholar
  5. 5.
    Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, Kastelein JJ, Bittner V, Fruchart JC (2007) HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med 357:1301–1310CrossRefPubMedGoogle Scholar
  6. 6.
    Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96(12):1221–1232CrossRefPubMedGoogle Scholar
  7. 7.
    Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, Byun J, Vuletic S, Kassim S, Singh P, Chea H, Knopp RH, Brunzell J, Geary R, Chait A, Zhao XQ, Elkon K, Marcovina S, Ridker P, Oram JF, Heinecke JW (2007) Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 117(3):746–756CrossRefPubMedGoogle Scholar
  8. 8.
    Asztalos BF, Sloop CH, Wong L, Roheim PS (1993) Two-dimensional electrophoresis of plasma lipoproteins: recognition of new apo A-I-containing subpopulations. Biochim Biophys Acta 1169(3):291–300PubMedGoogle Scholar
  9. 9.
    Santos RD, Schaefer EJ, Asztalos BF, Polisecki E, Wang J, Hegele RA, Martinez LR, Miname MH, Rochitte CE, Da Luz PL, Maranhão RC (2008) Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency. J Lipid Res 49(2):349–357CrossRefPubMedGoogle Scholar
  10. 10.
    Asztalos BF, Brousseau ME, McNamara JR, Horvath KV, Roheim PS, Schaefer EJ (2001) Subpopulations of high density lipoproteins in homozygous and heterozygous Tangier disease. Atherosclerosis 156(1):217–225CrossRefPubMedGoogle Scholar
  11. 11.
    Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G, Calabresi L (2007) Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res 48(3):592–599CrossRefPubMedGoogle Scholar
  12. 12.
    Asztalos BF, Horvath KV, Kajinami K, Nartsupha C, Cox CE, Batista M, Schaefer EJ, Inazu A, Mabuchi H (2004) Apolipoprotein composition of HDL in cholesteryl ester transfer protein deficiency. J Lipid Res 45(3):448–455CrossRefPubMedGoogle Scholar
  13. 13.
    Asztalos BF, de la Llera-Moya M, Dallal GE, Horvath KV, Schaefer EJ, Rothblat GH (2005) Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux. J Lipid Res 46(10):2246–2253CrossRefPubMedGoogle Scholar
  14. 14.
    Schaefer EJ, Heaton WH, Wetzel MG, Brewer HBJr (1982) Plasma apolipoprotein A-I absence associated with marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis 2:16–26PubMedGoogle Scholar
  15. 15.
    Schaefer EJ (1984) The clinical, biochemical, and genetic features in familial disorders of high density lipoprotein deficiency. Arteriosclerosis 4:303–322PubMedGoogle Scholar
  16. 16.
    Schaefer EJ, Ordovas JM, Law S, Ghiselli G, Kashyap ML, Srivastava LS, Heaton WH, Albers JJ, Connor WE, Lemeshev Y et al (1985) Familial apolipoprotein A-I and C-III deficiency, variant II. J Lipid Res 26:1089–1101PubMedGoogle Scholar
  17. 17.
    Ordovas JM, Cassidy DK, Civeira F, Bisgaier CL, Schaefer EJ (1989) Familial apolipoprotein A-I, C-III, and A-IV deficiency with marked high density lipoprotein deficiency and premature atherosclerosis due to a deletion of the apolipoprotein A-I, C-III, and A-IV gene complex. J Biol Chem 264:16339–16342PubMedGoogle Scholar
  18. 18.
    Norum RA, Lakier JB, Goldstein S, Angel A, Goldberg AB, Block WD, Noffze DK, Dolphin PJ, Edelglass J et al (1982) Familial deficiency of apolipoproteins A-I and C-III and precocious coronary artery disease. N Engl J Med 306:1513–1519CrossRefPubMedGoogle Scholar
  19. 19.
    Karathanasis SK, Norum RA, Zannis VI, Breslow JL (1983) An inherited polymorphism in the human apolipoprotein A-I gene locus related to the development of atherosclerosis. Nature 301:718–720CrossRefPubMedGoogle Scholar
  20. 20.
    Karathanasis SK, Ferris E, Haddad EA (1987) DNA inversion within the apolipoprotein AI/CIII/AIV-encoding gene cluster of certain patients with premature atherosclerosis. Proc Natl Acad Sci USA 84:7198–7202CrossRefPubMedGoogle Scholar
  21. 21.
    Forte TM, Nichols AV, Krauss RM, Norum RA (1984) Familial apolipoprotein AI and apolipoprotein CIII deficiency. Subclass distribution, composition, and morphology of lipoproteins in a disorder associated with premature atherosclerosis. J Clin Invest 74:1601–1613CrossRefPubMedGoogle Scholar
  22. 22.
    Sorci-Thomas MG, Thomas MJ (2002) The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc Med 12:121–128CrossRefPubMedGoogle Scholar
  23. 23.
    Zannis VI, Chroni A, Krieger M (2006) Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med 84:276–294CrossRefPubMedGoogle Scholar
  24. 24.
    Frank PG, Marcel YL (2000) Apolipoprotein A-I: structure-function relationships. J Lipid Res 41:853–872PubMedGoogle Scholar
  25. 25.
    Orso E, Broccardo C, Kaminske WE, Bottcher A, Liebisch G, Drobnik W, Gotz A, Chambenoit O, Diederich W, Langmann T, Spruss T, Luciani MF, Rothe G, Lackner KJ, Chimini Gand Schmitz G (2000) Transport of lipids from golgi to plasma membrane is defective in Tangier disease patients and ABCA-1-deficient mice. Nat Genet 24:192–196CrossRefPubMedGoogle Scholar
  26. 26.
    Lin YC, Ma C, Hsu WC, Lo HF, Yang VC (2007) Molecular interaction between caveolin-1 and ABCA1 on high-density lipoprotein-mediated cholesterol efflux in aortic endothelial cells. Cardiovasc Res 75:575–583CrossRefPubMedGoogle Scholar
  27. 27.
    Arakawa R, Abe-Dohmae S, Asai M, Ito JI, Yokoyama S (2000) Involvement of caveolin-1 in cholesterol enrichment of high density lipoprotein during its assembly by apolipoprotein and THP-1 cells. J Lipid Res 41:1952–1962PubMedGoogle Scholar
  28. 28.
    Rogler G, Trumbach B, Klima B, Lackner KJ, Schmitz G (1995) HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. Arterioscler Thromb Vasc Biol 15:683–690PubMedGoogle Scholar
  29. 29.
    Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22:352–355CrossRefPubMedGoogle Scholar
  30. 30.
    Brunham LR, Singaraja RR, Duong M, Timmins JM, Fievet C, Bissada N, Kang MH, Samra A, Fruchart JC, McManus B, Staels B, Parks JS, Hayden MR (2009) Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol 29(4):548–554CrossRefPubMedGoogle Scholar
  31. 31.
    McLean J, Fielding C, Drayna D, Dieplinger H, Baer B, Kohr W, Henzel W, Lawn R (1986) Cloning and expression of human lecithin-cholesterol acyltransferase cDNA. Proc Natl Acad Sci USA 83:2335–2339CrossRefPubMedGoogle Scholar
  32. 32.
    Fielding CJ, Fielding PE (1995) Molecular physiology of reverse cholesterol transport. J Lipid Res 36:211–228PubMedGoogle Scholar
  33. 33.
    Czarnecka H, Yokoyama S (1996) Regulation of cellular cholesterol efflux by lecithin:cholesterol acyltransferase reaction through nonspecific lipid exchange. J Biol Chem 266:2023–2028Google Scholar
  34. 34.
    Jonas A, von Eckardstein A, Kezdy KE, Steinmetz A, Assmann G (1991) Structural and functional properties of reconstituted high density lipoprotein discs prepared with six apolipoprotein A-I variants. J Lipid Res 32:97–106PubMedGoogle Scholar
  35. 35.
    Steinmetz A, Kaffarnik H, Utermann G (1985) Activation of phosphatidylcholine-sterol acyltransferase by human apolipoprotein E isoforms. Eur J Biochem 152:747–751CrossRefPubMedGoogle Scholar
  36. 36.
    Santamarina-Fojo S, Hoeg JM, Assmann G, Brewer HBJr (2001) Lecithin cholesterol acyltransferase deficiency and fish eye disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2817–2834Google Scholar
  37. 37.
    Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J (1997) The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 38:191–205PubMedGoogle Scholar
  38. 38.
    Rader DJ, Ikewaki K, Duverger N, Schmidt H, Pritchard H, Frohlich J, Clerc M, Dumon MF, Fairwell T, Zech L et al (1994) Markedly accelerated catabolism of apolipoprotein A-II (apoA-II) and high density lipoproteins containing apoA-II in classic lecithin:cholesterol acyltransferase deficiency and fish-eye disease. J Clin Invest 93:321–330CrossRefPubMedGoogle Scholar
  39. 39.
    Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, Edwards PA (2001) Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem 276:39438–39447CrossRefPubMedGoogle Scholar
  40. 40.
    Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch G, Kapinsky M, Diederich W, Drobnik W, Dean M et al (2000) ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci USA 97:817–822CrossRefPubMedGoogle Scholar
  41. 41.
    Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, Arai H, Ueda K, Matsuo M (2006) Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res 47(8):1791–1802CrossRefPubMedGoogle Scholar
  42. 42.
    Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48(11):2453–2462CrossRefPubMedGoogle Scholar
  43. 43.
    Wang N, Silver DL, Costet P, Tall AR (2000) Specific binding of apoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275:33053–33058CrossRefPubMedGoogle Scholar
  44. 44.
    Tall AR, Coster P, Wang N (2002) Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest 110:899–904PubMedGoogle Scholar
  45. 45.
    Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoprotein. Proc Natl Acad Sci USA 101:9774–9779CrossRefPubMedGoogle Scholar
  46. 46.
    Hassan HH, Denis M, Lee DY, Iatan I, Nyholt D, Ruel I, Krimbou L, Genest J (2007) Identification of an ABCA1-dependent phospholipid-rich plasma membrane apolipoprotein A-I binding site for nascent HDL formation: implications for current models of HDL biogenesis. J Lipid Res 48(11):2428–2442CrossRefPubMedGoogle Scholar
  47. 47.
    Van Eck M, Pennings M, Hoekstra M, Out R, Van Berkel TJ (2005) Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis. Curr Opin Lipidol 16(3):307–315CrossRefPubMedGoogle Scholar
  48. 48.
    Sankaranarayanan S, Oram JF, Asztalos BF, Vaughan AM, Lund-Katz S, Adorni MP, Phillips MC, Rothblat GH (2009) Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res 50(2):275–284CrossRefPubMedGoogle Scholar
  49. 49.
    Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, Culp JS, Danley DE, Freeman TB, Geoghegan KF et al (2007) Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol 14:106–113CrossRefPubMedGoogle Scholar
  50. 50.
    Rye KA, Hime NJ, Barter PJ (1997) Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J Biol Chem 272:3953–3960CrossRefPubMedGoogle Scholar
  51. 51.
    Zambon A, Deeb SS, Bensadoun A, Foster KE, Brunzell JD (2000) In vivo evidence of a role for hepatic lipase in human apoB-containing lipoprotein metabolism, independent of its lipolytic activity. J Lipid Res 41(12):2094–2099PubMedGoogle Scholar
  52. 52.
    Webb NR, de Beer MC, Asztalos BF, Whitaker N, van der Westhuyzen DR, de Beer FC (2004) Remodeling of HDL remnants generated by scavenger receptor class B type I. J Lipid Res 45(9):1666–1673CrossRefPubMedGoogle Scholar
  53. 53.
    de la Llera-Moya M, Rothblat GH, Connelly MA, Kellner-Weibel G, Sakr SW, Phillips MC, Williams DL (1999) Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface. J Lipid Res 40(3):575–580PubMedGoogle Scholar
  54. 54.
    Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, Jessup W (2006) ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 26(3):534–540CrossRefPubMedGoogle Scholar
  55. 55.
    Vaughan AM, Oram JF (2006) ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res 47(11):2433–2443CrossRefPubMedGoogle Scholar
  56. 56.
    Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K, South V, Amin D, Perrone M, Rader DJ (1999) A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 21:424–428CrossRefPubMedGoogle Scholar
  57. 57.
    Jahangiri A, Rader DJ, Marchadier D, Curtiss LK, Bonnet DJ, Rye KA (2005) Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J Lipid Res 46:896–903CrossRefPubMedGoogle Scholar
  58. 58.
    Settasatian N, Duong M, Curtiss LK, Ehnholm C, Jauhiainen M, Huuskonen J, Rye KA (2001) The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J Biol Chem 276:26898–26905CrossRefPubMedGoogle Scholar
  59. 59.
    van Haperen R, Samyn H, Moerland M, van Gent T, Peeters M, Grosveld F, van Tol A, de Crom R (2008) Elevated expression of phospholipid transfer protein in bone marrow derived cells causes atherosclerosis. PLoS One 3:e2255CrossRefPubMedGoogle Scholar
  60. 60.
    Valenta DT, Ogier N, Bradshaw G, Black AS, Bonnet DJ, Lagrost L, Curtiss LK, Desrumaux CM (2006) Atheroprotective potential of macrophage-derived phospholipid transfer protein in low-density lipoprotein receptor-deficient mice is overcome by apolipoprotein AI overexpression. Arterioscler Thromb Vasc Biol 26:1572–1578CrossRefPubMedGoogle Scholar
  61. 61.
    Hammad SM, Stefansson S, Twal WO, Drake CJ, Fleming P, Remaley A, Brewer HBJr, Argraves WS (1999) Cubilin, the endocytic receptor for intrinsic factor-vitamin B(12) complex, mediates high-density lipoprotein holoparticle endocytosis. Proc Natl Acad Sci USA 96(18):10158–10163CrossRefPubMedGoogle Scholar
  62. 62.
    Hammad SM, Barth JL, Knaak C, Argraves WS (2000) Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J Biol Chem 275(16):12003–12008CrossRefPubMedGoogle Scholar
  63. 63.
    Rye KA, Barter PJ (2004) Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 24:421–428CrossRefPubMedGoogle Scholar
  64. 64.
    Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ (2003) Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J Biol Chem 278:22530–22536CrossRefPubMedGoogle Scholar
  65. 65.
    Hime NJ, Barter PJ, Rye KA (1998) The influence of apolipoproteins on the hepatic lipase-mediated hydrolysis of high density lipoprotein phospholipid and triacylglycerol. J Biol Chem 273:27191–27198CrossRefPubMedGoogle Scholar
  66. 66.
    Rye KA, Duong M, Psaltis MK, Curtiss LK, Bonnet DJ, Stocker R, Barter PJ (2002) Evidence that phospholipids play a key role in pre-beta apoA-I formation and high-density lipoprotein remodeling. Biochemistry 41:12538–12545CrossRefPubMedGoogle Scholar
  67. 67.
    Caiazza D, Jahangiri A, Rader DJ, Marchadier D, Rye KA (2004) Apolipoproteins regulate the kinetics of endothelial lipase-mediated hydrolysis of phospholipids in reconstituted high-density lipoproteins. Biochemistry 43:11898–11905CrossRefPubMedGoogle Scholar
  68. 68.
    Glass C, Pittman RC, Civen M, Steinberg D (1985) Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro. J Biol Chem 260(2):744–750PubMedGoogle Scholar
  69. 69.
    Le NA, Ginsberg HN (1988) Heterogeneity of apolipoprotein A-I turnover in subjects with reduced concentrations of plasma high density lipoprotein cholesterol. Metabolism 37(7):614–617CrossRefPubMedGoogle Scholar
  70. 70.
    Jäckle S, Rinninger F, Lorenzen T, Greten H, Windler E (1993) Dissection of compartments in rat hepatocytes involved in the intracellular trafficking of high-density lipoprotein particles or their selectively internalized cholesteryl esters. Hepatology 17(3):455–465PubMedGoogle Scholar
  71. 71.
    Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271(5248):518–520CrossRefPubMedGoogle Scholar
  72. 72.
    Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M (1997) A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA 94(23):12610–12615CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Lipid Metabolism LaboratoryTufts UniversityBostonUSA

Personalised recommendations