High Density Lipoprotein Particles



Low levels of high density lipoprotein (HDL) cholesterol have been associated with an increased risk of coronary heart disease. In this chapter, we discuss the compositional and functional heterogeneity of HDL particles. We briefly describe different approaches to HDL particle characterization (by size, by apolipoprotein content, by protein content) and concentrate specifically on characterization by two-dimensional gel electrophoresis, immunoblotting, and image analysis. We describe the presence of distinct apolipoprotein A-I containing HDL particles and their major apolipoprotein compositions. These particles include very small, discoidal preβ-1 precursor HDL, very small discoidal α-4 HDL, small semi-spherical α-3 HDL, medium spherical α-2 HDL, and large spherical α-1 HDL. In addition, we review recent findings related to HDL proteomics and to possible new functions of HDL. In addition to reverse cholesterol transport, HDL has a large variety of other functions, as evidenced by the discovery of a large number of complement proteins, proteases, coagulation proteins, and proteins associated with HDL and involved in angiogenesis, cell adhesion, oxidation, and hemoglobin metabolism. These observations suggest an important role for HDL particles in the immune response, proteolysis, coagulation, angiogenesis, and other processes.


High Density Lipoprotein Endothelial Lipase High Density Lipoprotein Particle High Density Lipoprotein Fraction High Density Lipoprotein Subclass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barklay M, Barklay RK, Skipski VP (1963) High-density lipoprotein concentrations in men and women. Nature 200:362–363CrossRefGoogle Scholar
  2. 2.
    Fredrickson DS (1964) The inheritance of high density lipoprotein deficiency (Tangier Disease). J Clin Invest 43:228–236CrossRefPubMedGoogle Scholar
  3. 3.
    Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, Eaton GM, Lauer MA, Sheldon WS, Grines CL, Halpern S, Crowe T, Blankenship JC, Kerensky R (2003) Effect of recombinant apoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290(17):2292–2300CrossRefPubMedGoogle Scholar
  4. 4.
    Puchois P, Kandoussi A, Fievet P, Fourrier JL, Bertrand M, Koren E, Fruchart JC (1987) Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis 68(1–2):35–40CrossRefPubMedGoogle Scholar
  5. 5.
    Kostner G, Alaupovic P (1972) Studies of the composition and structure of plasma lipoproteins. Separation and quantification of the lipoprotein families occurring in the high density lipoproteins of human plasma. Biochemistry 11(18):3419–3428CrossRefPubMedGoogle Scholar
  6. 6.
    Castro GR, Fielding CJ (1988) Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry 27(1):25–29CrossRefPubMedGoogle Scholar
  7. 7.
    Asztalos BF, Sloop CH, Wong L, Roheim PS (1993) Two-dimensional electrophoresis of plasma lipoproteins: recognition of new apo A-I-containing subpopulations. Biochim Biophys Acta 1169(3):291–300PubMedGoogle Scholar
  8. 8.
    Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G, Calabresi L (2007) Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res 48(3):592–599CrossRefPubMedGoogle Scholar
  9. 9.
    Phillips JC, Wriggers W, Li Z, Jonas A, Schulten K (1997) Predicting the structure of apolipoprotein A-1 in reconstituted high-density lipoprotein disks. Biophys J 73:2337–2346CrossRefPubMedGoogle Scholar
  10. 10.
    Segrest JP, Jones MK, Klon AE, Sheldahl CJ, Hellinger M, De Loof HM, Harvey SC (1999) A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J Biol Chem 274(45):31755–31758CrossRefPubMedGoogle Scholar
  11. 11.
    Asztalos BF, de la Llera-Moya M, Dallal GE, Horvath KV, Schaefer EJ, Rothblat GH (2005) Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux. J Lipid Res 46(10):2246–2253CrossRefPubMedGoogle Scholar
  12. 12.
    Cheung MC, Brown BG, Wolf AC, Albers JJ (1991) Altered particle size distribution of apolipoprotein A-I-containing lipoproteins in subjects with coronary artery disease. J Lipid Res 32(3):383–394PubMedGoogle Scholar
  13. 13.
    de Beer MC, Webb NR, Whitaker NL, Wroblewski JM, Jahangiri A, van der Westhuyzen DR, de Beer FC (2009) SR-BI selective lipid uptake: subsequent metabolism of acute phase HDL. Arterioscler Thromb Vasc Biol 29(9):1298–1303CrossRefPubMedGoogle Scholar
  14. 14.
    Jahangiri A, de Beer MC, Noffsinger V, Tannock LR, Ramaiah C, Webb NR, van der Westhuyzen DR, de Beer FC (2009) HDL remodeling during the acute phase response. Arterioscler Thromb Vasc Biol 29(2):261–267CrossRefPubMedGoogle Scholar
  15. 15.
    Van Lenten BJ, Wagner AC, Navab M, Anantharamaiah GM, Hama S, Reddy ST, Fogelman AM (2007) Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits. J Lipid Res 48(11):2344–2353CrossRefPubMedGoogle Scholar
  16. 16.
    van der Westhuyzen DR, Cai L, de Beer MC, de Beer FC (2005) Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I. J Biol Chem 280(43):35890–35895CrossRefPubMedGoogle Scholar
  17. 17.
    Guerin M, Lassel TS, Le Goff W, Farnier M, Chapman MJ (2000) Action of atorvastatin in combined hyperlipidemia: preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles. Arterioscler Thromb Vasc Biol 20(1):189–197PubMedGoogle Scholar
  18. 18.
    Santos RD, Schaefer EJ, Asztalos BF, Polisecki E, Wang J, Hegele RA, Martinez LR, Miname MH, Rochitte CE, Da Luz PL, Maranhão RC (2008) Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency. J Lipid Res 49(2):349–357CrossRefPubMedGoogle Scholar
  19. 19.
    Asztalos BF, Brousseau ME, McNamara JR, Horvath KV, Roheim PS, Schaefer EJ (2001) Subpopulations of high density lipoproteins in homozygous and heterozygous Tangier disease. Atherosclerosis 156(1):217–225CrossRefPubMedGoogle Scholar
  20. 20.
    Asztalos BF, Horvath KV, Kajinami K, Nartsupha C, Cox CE, Batista M, Schaefer EJ, Inazu A, Mabuchi H (2004) Apolipoprotein composition of HDL in cholesteryl ester transfer protein deficiency. J Lipid Res 45(3):448–455CrossRefPubMedGoogle Scholar
  21. 21.
    Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, Byun J, Vuletic S, Kassim S, Singh P, Chea H, Knopp RH, Brunzell J, Geary R, Chait A, Zhao XQ, Elkon K, Marcovina S, Ridker P, Oram JF, Heinecke JW (2007) Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 117(3):746–756CrossRefPubMedGoogle Scholar
  22. 22.
    Davidson WS, Silva RA, Chantepie S, Lagor WR, Chapman MJ, Kontush A (2009) Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function. Arterioscler Thromb Vasc Biol 29(6):870–876CrossRefPubMedGoogle Scholar
  23. 23.
    Asztalos BF, Roheim PS, Milani RL, Lefevre M, McNamara JR, Horvath KV, Schaefer EJ (2000) Distribution of ApoA-I-containing HDL subpopulations in patients with coronary heart disease. Arterioscler Thromb Vasc Biol 20(12):2670–2676PubMedGoogle Scholar
  24. 24.
    Zhang W, Asztalos B, Roheim PS, Wong L (1998) Characterization of phospholipids in pre-alpha HDL: selective phospholipid efflux with apolipoprotein A-I. J Lipid Res 39(8):1601–1607PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Lipid Metabolism LaboratoryTufts UniversityBostonUSA

Personalised recommendations