Skip to main content

Quantum Cascade Lasers

  • Chapter
  • First Online:

Abstract

As a result of mass production, millions of semiconductor diode lasers are manufactured each month and appear in products ranging from telecommunications transmitters to DVD players and laser pointers. For traditional laser diodes, the applications are often dictated by what part of the electromagnetic spectrum is accessible. For example, telecommunications lasers operate in a region of the infrared where silica optical fiber has minimum dispersion or transmission loss. Laser-based displays, on the other hand, require red, green, and blue lasers to make a visible image. A biological fluorescence system will often require an ultraviolet source to function correctly. Though most people are unaware, a large part of the electromagnetic spectrum is still not fully utilized commercially due to the lack of a proper laser source. This includes the bulk of the “infrared” region. Though the scientific community has been exploring it for some time, the systems used for research are usually too bulky, too expensive, and too hard to understand to become large scale commercial products

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bai, Y., Darvish, S.R., Slivken, S., Sung, P., Nguyen, J., Evans, A., Zhang, W., and Razeghi, M., "Electrically pumped photonic crystal distributed feedback quantum cascade lasers," Applied Physics Letters 91, p. 141123, 2007.

    Article  CAS  Google Scholar 

  • Bai, Y., Darvish, S.R., Slivken, S., Zhang, W., Evans, A., Nguyen, J., and Razeghi, M., "Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power," Applied Physics Letters 92, p. 101105, 2008a.

    Article  CAS  Google Scholar 

  • Bai, Y., Slivken, S., Darvish, S.R., and Razeghi, M., "Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency," Applied Physics Letters 93, p. 021103, 2008b.

    Article  CAS  Google Scholar 

  • Bartolo, R.E., Bewley, W.W., Vurgaftman, I., Felix, C.L., Meyer, J.R., and Yang, M.J., "Mid-infrared angled-grating distributed feedback laser," Applied Physics Letters 76, pp. 3164-3166, 2000.

    Article  CAS  Google Scholar 

  • Darvish, S.R., Slivken, S., Evans, A., Yu, J.S., and Razeghi, M., "Roomtemperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at lambda similar to 9.6 μm," Applied Physics Letters 88, p. 201114, 200a.

    Google Scholar 

  • Darvish, S.R., Zhang, W., Evans, A., Yu, J.S., Slivken, S., and Razeghi, M., "Highpower, continuous-wave operation of distributed-feedback quantum-cascade lasers at lambda similar to 7.8 μm," Applied Physics Letters 89, p. 251119, 2006.

    Article  CAS  Google Scholar 

  • Evans, A., Yu, J.S., Slivken, S., and Razeghi, M., "Continuous-wave operation of λ ~ 4.8 μm quantum-cascade lasers at room temperature," Applied Physics Letters 85, pp. 2166-2168, 2004.

    Article  CAS  Google Scholar 

  • Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., and Cho, A.Y., "Quantum cascade laser," Science 264, pp. 553-556, 1994.

    Article  CAS  Google Scholar 

  • Faist, J., Gmachl, C., Capasso, F., Sirtori, C., Sivco, D.L., Baillargeon, J.N., and Cho, A.Y., "Distributed feedback quantum cascade lasers," Applied Physics Letters 70, pp. 2670-2672, 1997.

    Article  CAS  Google Scholar 

  • Kazarinov, R.F. and Suris, R.A., "Possibility of Amplication of Electromagnetic Waves in a Semiconductor with a Superlattice," Soviet Physics Semiconductors-Ussr 5, p. 707, 1971.

    Google Scholar 

  • Kohler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., and Rossi, F., "Terahertz semiconductorheterostructure laser," Nature 417, pp. 156-159, 2002.

    Article  CAS  Google Scholar 

  • Nguyen, J., Yu, J.S., Evans, A., Slivken, S., and Razeghi, M., "Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers," Applied Physics Letters 89, p. 111113, 2006.

    Article  CAS  Google Scholar 

  • Razeghi, M., Evans, A., Slivken, S., and Yu, J.S., "High power CW quantum cascade lasers: How short can we go?," Proceedings of SPIE 5738, pp. 1-12, 2005.

    Article  CAS  Google Scholar 

  • Slivken, S., Evans, A., Zhang, W., and Razeghi, M., "High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm," Applied Physics Letters 90, p. 151115, 2007.

    Article  CAS  Google Scholar 

  • Slivken, S., Evans, A., Nguyen, J., Bai, Y., Sung, P., Darvish, S.R., Zhang, W., and Razeghi, M., "Overview of quantum cascade laser research at the center for quantum devices," Proceedings of SPIE 6900, pp. 69000B1-8, 2008.

    Article  Google Scholar 

  • Smet, J.H., Fonstad, C.G., and Hu, Q., "Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources," Journal of Applied Physics 79, pp. 9305-9320, 1996.

    Article  CAS  Google Scholar 

  • Vurgaftman, I. and Meyer, J.R., "Photonic-crystal distributed-feedback quantum cascade lasers," IEEE Journal of Quantum Electronics 38, pp. 592-602, 2002.

    Article  CAS  Google Scholar 

  • Yu, J.S., Slivken, S., Darvish, S.R., Evans, A., Gokden, B., and Razeghi, M., "Highpower, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at lambda similar to 4.8 μm," Applied Physics Letters 87, p. 041104, 2005.

    Article  CAS  Google Scholar 

  • Yu, J.S., Evans, A., Slivken, S., Darvish, S.R., and Razeghi, M., "Temperature dependent characteristics of λ ~ 3.8 μm room-temperature continuous-wave quantum-cascade lasers," Applied Physics Letters 88, p. 251118, 2006.

    Article  CAS  Google Scholar 

Further reading

  • Agrawal, G. and Dutta, N., Semiconductor Lasers, Van Nostrand Reinhold, New York, 1993.

    Google Scholar 

  • Chuang, S.L., Physics of Optoelectronic Devices, John Wiley & Sons, New York, 1995.

    Google Scholar 

  • Iga, K., Fundamentals of Laser Optics, Plenum Press, New York, 1994.

    Google Scholar 

  • O'shea, D., Introduction to Lasers and Their Applications, Addison-Wesley, Reading, MA, 1978.

    Google Scholar 

  • Razeghi, M., The MOCVD Challenge Volume 1: A Survey of GaInAsP-InP for Photonic and Electronic Applications, Adam Hilger, Bristol, UK, 1989.

    Google Scholar 

  • Razeghi, M., The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications, Institute of Physics, Bristol, UK, pp. 21-29, 1995.

    Google Scholar 

  • Razeghi, M., "Optoelectronic Devices Based on III-V Compound Semiconductors Which Have Made a Major Scientific and Technological Impact in the Past 20 Years," IEEE Journal of Selected Topics in Quantum Electronics, 2000.

    Google Scholar 

  • Razeghi, M., "Kinetics of Quantum States in Quantum Cascade Lasers: Device Design Principles and Fabrication," Microelectronics Journal 30, pp. 10191029, 1999.

    Article  Google Scholar 

  • Siegman, A.E., Lasers, University Science Book, Mill Valley, Calif., 1986.

    Google Scholar 

  • Silfvast, W.T., Laser Fundamentals, Cambridge University Press, New York, 1996.

    Google Scholar 

  • Streetman, B.G., Solid States Electronic Devices, Prentice-Hall, Englewood Cliffs, NJ, 1990.

    Google Scholar 

  • Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Razeghi, M. (2010). Quantum Cascade Lasers. In: Technology of Quantum Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1056-1_7

Download citation

Publish with us

Policies and ethics