Advertisement

Semiconductor Lasers

  • Manijeh Razeghi
Chapter

Abstract

The word “laser” is an acronym for “light amplification by stimulated emission of radiation”. The principles of lasers were understood at the end of 1950’s [Schawlow et al. 1958]. The first working laser was built by Maiman in 1960, and used a ruby crystal optically pumped by a flash lamp.

Keywords

Quantum Well Semiconductor Laser Transverse Electric Population Inversion Resonant Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casey, H.C., and Panish M.B., Heterostructure Lasers, parts A & B, Academic Press, New York, 1978.Google Scholar
  2. Chuang, S.L., Physics of Optoelectronic Devices, John Wiley & Sons, New York, p. 497, 1995.Google Scholar
  3. Diaz, J., Yi, H.J., Kim, S., Wang, L.J., and Razeghi, M., “High Temperature Reliability of Aluminum-free 980 nm and 808 nm Laser Diodes,” Compound Semiconductors 1995 (Institute of Physics Conference Series 145), eds. J.C. Woo and Y.S. Park, Institute of Physics Publishing, Bristol, UK, pp. 1041-1046, 1996.Google Scholar
  4. Diaz, J., Yi, H.J., and Razeghi, M., “Long-term reliability of Al-free InGaAsP/GaAs (λ=808 nm) lasers at high-power high-temperature operation,” Applied Physics Letters 71, pp. 3042-3044, 1997.CrossRefGoogle Scholar
  5. Faist, J., Capasso, F., Sivco, D.L., Hutchinson, A.L., and Cho, A.Y., “Quantum cascade laser,” Science 264, pp. 553-556, 1994.CrossRefGoogle Scholar
  6. Felix, C.L., Meyer, J.R., Vurgaftman, I., Lin, C.H., Murry, S.J., Zhang, D., and Pei, S.S., “High-temperature 4.5 μm type II quantum-well laser with Auger suppression,” IEEE Photonics Technology Letters 9, pp. 734-736, 1997.CrossRefGoogle Scholar
  7. Fuchs, F., Weimer, U., Pletschen, W., Schmitz, J., Ahlswede, E., Walther, M., Wagner, J., and Koidl, P., “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Applied Physics Letters 71, pp. 3251-3253, 1997.CrossRefGoogle Scholar
  8. Henry, C.H., “Theory of the Linewidth of Semiconductor Lasers”, IEEE Journal of Quantum Electronics 18, pp. 259-264, 1982.CrossRefGoogle Scholar
  9. Holonyak Jr., N. and Bevacqua, S.F., “Coherent (visible) light emission from Ga(As1-xPx) junctions),” Applied Physics Letters 1, pp. 82-83, 1962.CrossRefGoogle Scholar
  10. Johnson, J.L., Samoska, L.A., Gossard, A.C., Merz, J., Jack, M.D., Chapman, G.R., Baumgratz, B.A., Kosai, K., and Johnson, S.M., “Electrical and optical properties of infrared photodiodes using the InAs/Ga1-xInxSb superlattice in heterojunctions with GaSb,” Journal of Applied Physics 80, pp. 1116-1127, 1996.CrossRefGoogle Scholar
  11. Kazarinov, R.F. and Suris, R.A., “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Soviet Physics Semiconductors 5, pp. 707-709, 1971.Google Scholar
  12. Kelly, M.J., Low-Dimensional Semiconductors: Materials, Physics, Technology, Devices, Oxford University Press, New York, 1995.Google Scholar
  13. Kuznetsov, M., Willner, A.E., Okaminow, I.P., ”Frequency-modulation response of tunable 2-segment distributed feedback lasers,” Applied Physics Letters 55, pp. 1826-1828, 1989.CrossRefGoogle Scholar
  14. Lane, B., Wu, A., Stein, A, Diaz, J., and Razeghi, M., “InAsSb InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition,” Applied Physics Letters 74, pp. 3438-3440, 1999.CrossRefGoogle Scholar
  15. Lane, B., Tong, S., Diaz, J., Wu, Z., and Razeghi, M., “High power InAsSb/InAsSbP electrical injection laser diodes emitting between 3 and 5 μm,” Material Science and Engineering B 74, pp. 52-55, 2000.CrossRefGoogle Scholar
  16. Lin, C.H., Yang, R.Q., Zhang, D., Murry, S.J., Pei, S.S., Allerman, A.A. and Kurtz, S.R., “Type II interband quantum cascade laser at 3.8 µm,” Electronics Letters 33, pp. 598-599, 1997.CrossRefGoogle Scholar
  17. Maiman, T.H., “Stimulated Optical Radiation in Ruby,” Nature 187, pp. 493-494, 1960.CrossRefGoogle Scholar
  18. Mobarhan, K., Razeghi, M., Marquebielle, G., Vassilaki, E., “High-Power 0.98 μm, Ga0.8In0.2As/GaAs/Ga0.51In0.49P Multiple Quantum-Well Laser,” Journal of Applied. Physics 72, pp. 4447-4448, 1992.CrossRefGoogle Scholar
  19. Mohseni, H., Michel, E., Sandven, J., Razeghi, M., Mitchel, W., and Brown, G., “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Applied Physics Letters 71, pp. 1403-1405, 1997.CrossRefGoogle Scholar
  20. Boyraz, O. and Jalali, B., “Demonstration of a silicon Raman laser,” Optics Express 12, pp. 5269-5273, 2004.CrossRefGoogle Scholar
  21. Razeghi, M., Hirtz, P., Blondeau, R., and Duchemin, J.P., “Aging Test of MOCVD Shallow Proton Stripe GaInAsP-InP, DH Laser Diode Emitting at 1.5 μm,” Electronics Letters 19, p. 481, 1983a.CrossRefGoogle Scholar
  22. Razeghi, M., Hersee, S., Blondeau, R., Hirtz, P., and Duchemin, J.P., “Very Low Threshold GaInAsP/InP DH Lasers Grown by MOCVD,” Electronics Letters 19, p. 336, 1983b.CrossRefGoogle Scholar
  23. Razeghi, M., in Lightwave Technology for Communication, ed. W.T. Tsang, Academic Press, New York, 1985a.Google Scholar
  24. Razeghi, M., Blondeau, R., Boulay, J.C., de Cremoux, B., and Duchemin, J.P., “LPMOCVD growth and CW operation of high quality SLM and DFB semiconductor GaxIn1-xAsyP1-y–InP lasers,” in GaAs and Related Compounds 1984 (Institute of Physics Conference Series 74), UK Adam Hilger, Bristol, UK, p. 451, 1985b.Google Scholar
  25. Razeghi, M., Blondeau, R., Krakowski, M., Bouley, J.C., Papuchon, M., de Cremoux, B., and Duchemin, J.P. “Low-Threshold Distributed Feedback Lasers Fabricated on Material Grown Completely by LP-MOCVD,” IEEE Journal of Quantum Electronics QE-21, pp. 507-511, 1985c.CrossRefGoogle Scholar
  26. Razeghi, M., “CW Phase-Locked Array GaInAsP-InP High Power Semiconductor Laser Grown by Low- Pressure Metalorganic Chemical Vapor Deposition,” Applied Physics Letters 50, p. 230, 1987.CrossRefGoogle Scholar
  27. Razeghi, M., “High-power laser diodes based on InGaAsP alloys,” Nature 369, pp. 631-633, 1994.CrossRefGoogle Scholar
  28. Razeghi, M., “High Power InAsSb/ InAsSbP Laser Diodes Emitting in the 3-5 μm Range,” in 1998 Army Research Office Highlights, Physical Sciences Directorate, 1998.Google Scholar
  29. Razeghi, M., Wu, D., Lane, B., Rybaltowski, A., Stein, A., Diaz, J., and Yi, H., “Recent achievement in MIR high power injection laser diodes (λ=3 to 5 μm),” LEOS Newsletter 13, pp. 7-10, 1999.Google Scholar
  30. Rong, H., Jones, R., Liu, A., Cohen, O., Hak, D., Fang, A., and Paniccia, M., “A continuous-wave silicon Raman laser,” Nature 433, pp. 725-728, 2005.CrossRefGoogle Scholar
  31. Sai-Halasz, G.A., Tsu, R., and Esaki, L., “A new semiconductor superlattice,” Applied Physics Letters 30, pp. 651-653, 1977.CrossRefGoogle Scholar
  32. Sai-Halasz, G.A., Chang, L.L., Welter, J.M., Chang, C.A., and Esaki, L., “Optical absorption of In1-xGaxAs-GaSb1-yAsy superlattices,” Solid State Communications 27, pp. 935-937, 1978a.CrossRefGoogle Scholar
  33. Sai-Halasz, G.A., Esaki, L., and Harrison, W.A., “InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition,” Physical Review B 18, pp. 2812-2818, 1978b.CrossRefGoogle Scholar
  34. Schawlow, A.L. and Townes, C.H., “Infrared and optical masers,” The Physical Review 112, pp. 1940-1949, 1958.CrossRefGoogle Scholar
  35. Smith, D.L., and Mailhiot, C., “Proposal for strained type II superlattice infrared detectors,” Journal of Applied Physics 62, pp. 2545-2548, 1987.CrossRefGoogle Scholar
  36. Wu, D., Lane, B., Mosheni, H., Diaz, J., and Razeghi, M., “High power asymmetrical InAsSb/ InAsSbP/ AlAsSb double heterostructure lasers emitting at 3.4 μm,” Applied Physics Letters 74, pp. 1194-1196, 1999.CrossRefGoogle Scholar
  37. Xie, H., Wang, W.I., and Meyer, J.R., “Infrared electroabsorption modulation at normal incidence in asymmetrically stepped AlSb/InAs/GaSb/AlSb quantum wells,” Journal of Applied Physics 76, pp. 92-96, 1994.CrossRefGoogle Scholar
  38. Yang, B.H., Zhang, D., Yang, R.Q., Lin, C.H., Murry, S.J., and Pei, S.S., “Mid-infrared interband cascade lasers with quantum efficiencies > 200%,” Applied Physics Letters 72, pp. 2220-2222, 1998.CrossRefGoogle Scholar
  39. Yi, H., Diaz, J., Wang, L.J., Kim, S., Williams, R., Erdtmann, M., He, X., and Razeghi, M., “Optimized structure for InGaAsP/GaAs 808 nm high power lasers,” Applied Physics Letters 66, pp. 3251-3253, 1995.CrossRefGoogle Scholar
  40. Youngdale, E.R., Meyer, J.R., Hoffman, C.A., Bartoli, F.J., Grein, C.H., Young, P.M., Ehrenreich, H., Miles, R.H., and Chow, D.H., “Auger lifetime enhancement in InAs-Ga1-xInxSb superlattices,” Applied Physics Letters 64, pp. 3160-3162, 1994.CrossRefGoogle Scholar

Further reading

  1. Agrawal, G. and Dutta, N., Semiconductor Lasers, Van Nostrand Reinhold, New York, 1993.Google Scholar
  2. Felix, C.L., Meyer, J.R., Vurgaftman I., Lin, C.H., Murry, S.J., Zhang, D., and Pei, S.S., “High-temperature 4.5 µm Type-II quantum-well laser with Auger suppression,” IEEE Photonics Technology Letters 9, pp. 734-736, 1997.CrossRefGoogle Scholar
  3. Iga, K., Fundamentals of Laser Optics, Plenum Press, New York, 1994.Google Scholar
  4. Johnson, J.L., Samoska, L.A., Gossard, A.C., Merz, J., Jack, M.D., Chapman, G.R., Baumgratz, B.A., Kosai, K., and Johnson, S.M., “Electrical and optical properties of infrared photodiodes using the InAs/Ga1-xInxSb superlattice in heterojunctions with GaSb,” Journal of Applied Physics 80, pp. 1116-1127, 1996.CrossRefGoogle Scholar
  5. Kim, S. and Razeghi, M., “Recent advances in quantum dot optoelectronic devices and future trends,” in Handbook of Advanced Electronic and Photonic Materials and Devices, ed. H.S. Nalwa, Academic Press, London, pp. 133-154, 2001.CrossRefGoogle Scholar
  6. Lin, C.H., Yang, R.Q., Zhang, D., Murry, S.J., Pei, S.S., Allerman, A.A. and Kurtz, S.R., “Type-II interband quantum cascade laser at 3.8 µm,” Electronics Letters 33, pp. 598-599, 1997.CrossRefGoogle Scholar
  7. Mohseni, H., Michel, E., Sandven, J., Razeghi, M., Mitchel, W., and Brown, G., “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Applied Physics Letters 71, pp. 1403-1405, 1997.CrossRefGoogle Scholar
  8. O'shea, D., Introduction to Lasers and Their Applications, Addison-Wesley, Reading, MA, 1978.Google Scholar
  9. Razeghi, M., The MOCVD Challenge Volume 1: A Survey of GaInAsP-InP for Photonic and Electronic Applications, Adam Hilger, Bristol, UK, 1989.Google Scholar
  10. Razeghi, M., The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications, Institute of Physics, Bristol, UK, pp. 21-29, 1995.Google Scholar
  11. Razeghi, M., “Optoelectronic Devices Based on III-V Compound Semiconductors Which Have Made a Major Scientific and Technological Impact in the Past 20 Years,” IEEE Journal of Selected Topics in Quantum Electronics, 2000.Google Scholar
  12. Razeghi, M., Wu, D., Lane, B., Rybaltowski, A., Stein, A., Diaz, J., and Yi, H., “Recent achievements in MIR high power injection laser diodes (λ = 3 to 5 μm),” LEOS Newsletter 13, pp. 7-10, 1999.Google Scholar
  13. Razeghi, M., “Kinetics of Quantum States in Quantum Cascade Lasers: Device Design Principles and Fabrication,” Microelectronics Journal 30, pp. 1019-1029, 1999.CrossRefGoogle Scholar
  14. Scherer, A., Jewell, J., Lee, Y.H., Harbison, J., and Florez, L.T., “Fabrication of microlasers and microresonator optical switches,” Applied Physics Letters 55, pp. 2724-2726, 1989.CrossRefGoogle Scholar
  15. Siegman, A.E., Lasers, University Science Book, Mill Valley, Calif., 1986.Google Scholar
  16. Silfvast, W.T., Laser Fundamentals, Cambridge University Press, New York, 1996.Google Scholar
  17. Streetman, B.G., Solid States Electronic Devices, Prentice-Hall, Englewood Cliffs, NJ, 1990.Google Scholar
  18. Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Manijeh Razeghi
    • 1
  1. 1.Walter P. Murphy Professor of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations