Advertisement

Terahertz Device Technology

  • Manijeh Razeghi
Chapter

Abstract

The infrared region is a range of the electromagnetic spectrum split into three parts, the near-infrared (NIR), the mid-infrared (MIR) and the far-infrared (FIR). Previously, it was usual to refer to the terahertz (THz) range as the range of frequencies below FIR. Nowadays, the THz range is attributed to the electromagnetic spectrum which spans the FIR to the millimeter wave. This THz range of the electromagnetic spectrum starts at 1000 µm and finishes at 50 µm (0.3 THz to 6 THz). So, these wavelengths are commonly named THz, far-infrared or submillimeter wave. THz waves are located between the optical region (infrared) and the microwaves. Only a few compact, easy to use, room temperature sources are available.

Keywords

Landau Level Quantum Cascade Laser Apply Physic Letter Difference Frequency Generation Quantum Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajili, L., Scalari, G., Hoyler, N., Giovannini, M., and Faist, J., “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Applied Physics Letters 87, pp. 141107-1, 2005.CrossRefGoogle Scholar
  2. Alton, J., Barbieri, S., Fowler, J., Beere, H., Muscat, J., Linfield, E., Ritchie, D., Davies, G., Köhler, R., and Tredicucci, A., “Magnetic field in-plane quantization and tuning of population inversion in a THz superlattice quantum cascade laser,” Physics Review B 68, pp.081303-1, 2003.CrossRefGoogle Scholar
  3. Altukhov, I.V., Chirkova, E.G., Kagan, M.S., Korolev, K.A., Sinis, V.P., and Yassievich, I.N., “Far-Infrared Stimulated Emission in p-Ge under High Uniaxial Pressure,” Physica Status Solidi B198 pp. 35, 1996.CrossRefGoogle Scholar
  4. Baumann, E., Giorgetta, F., Hofstetter, D., Wu, H., Schaff, W., Eastman, L., and Kirste, L., “Tunneling effects and intersubband absorption in AlN/GaN superlattices,” Applied Physics Letters 86, pp. 32110-1, 2005.CrossRefGoogle Scholar
  5. Baumann, E., Giorgetta, F.R., Hofstetter, D., Golka, S., Scherenk, W., Strasser, G., Kirste, L., Nicolay, S., Feltin, E. Carlin, J.F., and Grandjean, N., “Near infrared absorption and room temperature photovoltaic response in AlN/GaN superlattices grown by metal-organic vapor-phase epitaxy,” Applied Physics Letters 89, pp. 041106-1, 2006.CrossRefGoogle Scholar
  6. Becker, C., Vasanelli, A., Sirtori, C., and Bastard, G., “Electron–longitudinal optical phonon interaction between Landau levels in semiconductor heterostructures,” Physics Review B 69, pp. 115328-1 (2004)CrossRefGoogle Scholar
  7. Belkin, M.A., Capasso, F., Xie, F., Belyanin, A., Fischer, M., Wittmann, A., and Faist, J., “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Applied Physics Letters 92, pp. 201101-1, 2008.CrossRefGoogle Scholar
  8. Belkin, M.A., Fan, J.A., Hormoz, S., Capasso, F., Khanna, S.P., Lachab, M., Davies, A.G., and Linfield, E.H., “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Optics Express 16, pp. 3242, 2008.CrossRefGoogle Scholar
  9. Blaser, S., Rochat, M., Beck, M., Hofstetter, D., and Faist, J., “Terahertz intersubband emission in strong magnetic fields,” Applied Physics Letters 81, pp. 67, 2002.CrossRefGoogle Scholar
  10. Brown, E.R., Smith, F.W., and McIntosh, K.A., “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” Journal of Applied Phycis 73, pp. 1480, 1993.CrossRefGoogle Scholar
  11. Brown, E., McIntosh, K., Nichols, K., and Dennis, C., “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Applied Physics Letters 66, pp. 285, 1995.CrossRefGoogle Scholar
  12. Brucherseifer, M., Nagel, M., Haring, B.P., Kurz, H., Bosserhoff A., and Büttner, R., “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Applied Physics Letters 77, pp. 4049, 2000.CrossRefGoogle Scholar
  13. Bründermann, E., Chanberlin, D.R., and Haller, E.E., “High duty cycle and continuous terahertz emission from germanium,” Applied Physics Letters 76, pp. 2991, 2000.CrossRefGoogle Scholar
  14. Bykhovski, A.D., Gelmont, B.L. and M.S. Shur. “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices,” Journal of Applied Phycis 81, pp. 6332, 1997.CrossRefGoogle Scholar
  15. Colombelli, R., Capasso, F., Gmachl, C., Hutchinson, A.L., Sivco, D.L., Tredicucci, A., Wanke, M.C., Sergent, A.M. and Cho, A.Y., “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 µm and 24 µm wavelengths,” Applied Physics Letters 78, pp. 2620, 2001.CrossRefGoogle Scholar
  16. Dyakonov, M. and Shur, M.S. “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Physics Review Letters 71, pp. 2465, 1993.CrossRefGoogle Scholar
  17. Dyakonov, N., El Fatimy, A., Lusakowski, J., Knap, W., Dyakonov, M.I., Poisson M.A., Morvan E., Bollaert, S., Shchepetov, A., Roelens, Y., Gaquiere, Ch., Theron, D., and Cappy, A., “Room-temperature terahertz emission from nanometer field-effect transistors,” Applied Physics Letters 88, pp. 141906-1, 2006.CrossRefGoogle Scholar
  18. Fattinger, Ch., and Grischkowsky, D., “Point source terahertz optics,” Applied Physics Letters 53, pp. 1480, 1988.CrossRefGoogle Scholar
  19. Ferreira, R., “Resonances in the hopping probability between flexible quantum dots: The case of superlattices under parallel electric and magnetic fields,” Physics Review B 43, pp. 9336, 1991.CrossRefGoogle Scholar
  20. Friel, I., Driscoll, K., Kulenica, E., Dutta, M., Paiella, R., and Moustakas, T., “Investigation of the design parameters of AlN/GaN multiple quantum wells grown by molecular beam epitaxy for intersubband absorption,” Journal of Crystal Growth 278, pp. 387, 2005.CrossRefGoogle Scholar
  21. Gmachl, C., Ng, H.S., Chu, N.G., and Cho, A.Y. “Intersubband absorption at λ ~1.55 µm in well- and modulation-doped GaN/AlGaN multiple quantum wells with superlattice barriers,” Applied Physics Letters 77, 3722 (2000).CrossRefGoogle Scholar
  22. Gousev, Y.P., Altukhov, I.V., Korolev, K.A., Sinis, V.P., Kagan, M.S., Haller, E.E., Odnoblyudov, M.A., Yassievich, I.N., and Chao, K.A., “Widely tunable continuous-wave THz laser,” Applied Physics Letters 75, pp. 757, 1999.CrossRefGoogle Scholar
  23. Guo, R., Akiyama, K., Minamide, H., and Ito, H., “All-solid-state, narrow linewidth, wavelength-agile terahertz-wave generator,” Applied Physics Letters 88, pp. 091120-1, 2006.CrossRefGoogle Scholar
  24. Hamazaki, J., Ans, S.M., Kunugita, H., Ema, K., Kanazawa, H., Tachibana, T., Kikuchi, A., and Kishino, K., “Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 µm in GaN/AlN multiple-quantum wells,” Applied Physics Letters 84, pp. 1102, 2004.CrossRefGoogle Scholar
  25. Hofstetter, D., Schad, S.S., Wu, H., Shaff, W., and Eastman, L., “GaN/AlN-based quantum-well infrared photodetector for 1.55 µm,” Applied Physics Letters 83, pp. 572, 2003.CrossRefGoogle Scholar
  26. Huang, G.S., Lu, T.C., Yao, H.H., Kuo, H.C., Wang, S.C., un, G., Lin, C., Chang, L., Soref, R.A., “GaN/AlGaN active regions for terahertz quantum cascade lasers grown by low-pressure metal organic vapor deposition,” Journal of Crystal Growth 298, pp. 687, 2007.CrossRefGoogle Scholar
  27. Humphreys, K., Loughran, J.P., Gradziel, M., Lanigan, W., Ward, T., Murphy, J.A., O’Sullivan, C., Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, pp. 1302-1305, 2004.Google Scholar
  28. Iizuka, N., Kaneko, K., Suzuki, N., Asano, T., Noda, S., and Wada, O., “Ultrafast intersubband relaxation (<=150 fs) in AlGaN/GaN multiple quantum wells,” Applied Physics Letters 77, pp. 648, 2000.CrossRefGoogle Scholar
  29. Inguscio, M., Moruzzi, G., Evenson, K.M., and Jennings, D.A., “A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz,” Journal of Applied Physics 60, pp. R161, 1986.CrossRefGoogle Scholar
  30. Jovanović, V.D., Indjin, D., Ikonić, Z., and Harrison, P., “Simulation and design of GaN/AlGaN far-infrared (λ ~34 µm) quantum-cascade laser,” Applied Physics Letters 84, pp. 2995, 2004.CrossRefGoogle Scholar
  31. Jukam, N., Dhillon, S.S., Oustinov, D., Zhao, Z.Y., Hameau, S., Tignon, J., Barbieri, S., Vasanelli, A., Filloux, P., Sirtori, C., and Marcadet, X., “Investigation of spectral gain narrowing in quantum cascade lasers using terahertz time domain spectroscopy,” Applied Physics Letters 93, pp. 101115-1, 2008.CrossRefGoogle Scholar
  32. Julien, F.H., Tchernycheva, M., Nevou, L., Doyennette, L., Colombelli, R., Warde, E., Guillot, F., and Monroy, E., “Nitride intersubband devices: prospects and recent developments,” Physica Status Solidi. (a) 204, pp. 1987, 2007.CrossRefGoogle Scholar
  33. Kagan, M.S., Altukhov, I.V., Sinis, V.P., Thomas, S.G., Wang, K.L., Chao, K.A., and Yassievich, I.N., “Terahertz emission of SiGe/Si quantum wells,” Thin Solid Films 380, pp. 237, 2000.CrossRefGoogle Scholar
  34. Knap, W., Lusakowski, J., Parenty, T., Bollaert, S., Cappy, A., Popov, V.V., and Shur, M.S., “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Applied Physics Letters 84, pp. 2331, 2004.CrossRefGoogle Scholar
  35. Kempa, K., Zhou, Y., Engelbrecht, J., Bakshi, P., Ha, H., Moser, J., Naughton, M., Ulrich, J., Strasser, G., Gornik, E., and Unterrainer, K., “Intersubband Transport in Quantum Wells in Strong Magnetic Fields Mediated by Single- and Two-Electron Scattering,” Physics Review Letters 88, pp. 226803, 2002.CrossRefGoogle Scholar
  36. Kishino, K., Kikuchi, A., Kanazawa, H., and Tachibana, T., “Intersubband transition in (GaN)m/(AlN)n superlattices in the wavelength range from 1.08 to 1.61 µm,” Applied Physics Letters 81, pp. 1234, 2000.CrossRefGoogle Scholar
  37. Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Dhillon, S.S., and Sirtori, C., “High-performance continuous-wave operation of superlattice terahertz quantum-cascade lasers,” Applied Physics Letters 82, pp. 1518, 2003.CrossRefGoogle Scholar
  38. Kröll, J., Darmo, J., Dhillon, S.S., Marcadet, X., Calligaro, M., Sirtori, C., and Unterrainer, K., “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, pp 698, 2007.CrossRefGoogle Scholar
  39. Kumar, S., Williams, B.S., Kohen, S., Hu, Q., and Reno, J.L., “Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature,” Applied Physics Letters 84, pp. 2494, 2004.CrossRefGoogle Scholar
  40. Leuliet, A., Vasanelli, A., Wade, A., Fedorov, G., Smirnov, D., Bastard, G., and Sirtori, C., “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Physics Review B 73, pp. 085311-1, 2006.CrossRefGoogle Scholar
  41. Mittleman, D.M., Jacobsen, R.H., and Nuss, M.C., “T-ray imaging,” IEEE Journal of Selected Topics in Quantum Electronics 2, pp. 679, 1996.CrossRefGoogle Scholar
  42. Nagel, M., Bolivar, P.H., Brucherseifer, M., Kurz, H., Bosserhoff, A., and Büttner, R., “Integrated THz technology for label-free genetic diagnostics,” Applied Physics Letters 80, pp. 154, 2002.CrossRefGoogle Scholar
  43. Nevou, L., Tchernycheva, M., Julien, F.H., Guillot, F., and Monroy, E., “Short wavelength (λ =2.13 µm) intersubband luminescence from GaN/AlN quantum wells at room temperature,” Applied Physics Letters 90, pp. 121106-1, 2007.CrossRefGoogle Scholar
  44. Nicolay, S., Feltin, E., Carlin, J.F., Grandjean, N., Nevou, L., Julien, F.H., Schmidbauer, M., Remmele, T., and Albrecht, M., “Strain-induced interface instability in GaN/AlN multiple quantum wells,” Applied Physics Letters 91, pp. 061927-1, 2007.CrossRefGoogle Scholar
  45. Nishizawa, J., Tanabe, T., Suto, K., Watanabe, Y., Sasaki T., and Oyama, Y., “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photonics Technology Letters 18, pp. 2008, 2006.CrossRefGoogle Scholar
  46. Pavlov, S.G., Zhukavin, R.K., Orlova, E.E., Shastin, V.N., Kirsanov, A.V., Hubers, H.W., and Auen, K., “Stimulated Emission from Donor Transitions in Silicon,” Physics Review Letters 84, pp. 5220, 2000.CrossRefGoogle Scholar
  47. Péré-Laperne, N., Vaulchier, L.A., Guldner, Y., Bastard, G., Scalari, G., Giovannini, M., Faist, J., Vasanelli, A., Dhillon, S., and Sirtori, C., “Inter-Landau level scattering and LO-phonon emission in terahertz quantum cascade laser,” Applied Physics Letters 91, pp. 062102-1, 2007.CrossRefGoogle Scholar
  48. Pflüg, C., Belkin, M.A., Wang, Q.J., Geiser, M., Belyanin, A., Fischer, M., Wittmann, A., Faist, J., and Capasso, F., “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Applied Physics Letters 93, pp. 161110-1, 2008.CrossRefGoogle Scholar
  49. Phillips, T.G. andKeene, J., “Submillimeter astronomy,” Proceedings of the IEEE 80, pp. 1662, 1992.Google Scholar
  50. Prasad, T., Colvin, V.L., and Mittleman, D.M., “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Optics Express 15, pp. 16954-1, 2007.CrossRefGoogle Scholar
  51. Rochat, M., Ajili, L., Willenberg, H., Faist, J., Beere, H., Davies G., Linfield, E., and Ritchie, D., “Low-threshold terahertz quantum-cascade lasers,” Applied Physics Letters 81, pp. 1381, 2002.CrossRefGoogle Scholar
  52. Scalari, G., Ajili, L., Fais, J., Beere, H., Linfield, E., Ritchie, D., and Davies, G., “Far-infrared (λ ~ 87 µm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Applied Physics Letters 82, pp. 3165, 2003.CrossRefGoogle Scholar
  53. Scalari, G., Blaser, S., Ajili, L., Faist, J., Beere, H., Linfield, E., Ritchie, D., and Davies, G., “Population inversion by resonant magnetic confinement in terahertz quantum-cascade lasers,” Applied Physics Letters 83, pp. 3453, 2003.CrossRefGoogle Scholar
  54. Scalari, G., Blaser, S., Faist, J., Beere, H., Linfield, E., Ritchie, D., and Davies, G., “Terahertz Emission from Quantum Cascade Lasers in the Quantum Hall Regime: Evidence for Many Body Resonances and Localization Effects,” Physics Review Letters 93,pp. 237403, 2004.CrossRefGoogle Scholar
  55. Scalari, G., Walther, C., Faist, J., Beere, H., and Ritchie, D., “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Applied Physics Letters 88, pp. 141102-1, 2006.CrossRefGoogle Scholar
  56. Scalari, G., Walther, C., Fischer, M., Terazzi, R., Beere, H., Ritchie, D., and Faist, J., “THz and sub-THz quantum cascade lasers,” Laser & Photonics Review 3, pp. 45, 2008.CrossRefGoogle Scholar
  57. Shi, W.,, Ding, Y.J., Fernelius, N., and Vodopyanov, K., “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Optics Letters 27, pp. 1454, 2002CrossRefGoogle Scholar
  58. Siegel, P.H., “Terahertz technology,” IEEE Transactions on Microwave Theory and Techniques 50, pp. 910, 2002.CrossRefGoogle Scholar
  59. Smirnov, D., Becker, C., Drachenko, O., Rylkov, V.V., Page, H., Leotin,v, and Sirtori, C., “Control of electron–optical-phonon scattering rates in quantum box cascade lasers,” Physics Review B 66, pp. 121305-1, 2002.CrossRefGoogle Scholar
  60. Smirnov, D., Drachenko, O., Leotin, J., Page H., Becker, C., Sirtori C., Apalkov, V., and Chakraborty, T., “Intersubband magnetophonon resonances in quantum cascade structures,” Physics Review B 66, pp. 125317, 2002.CrossRefGoogle Scholar
  61. Sun, G., Soref, R.A., Microelectronics Journal 36, pp. 450, 2005.Google Scholar
  62. Suto, K., Sasakia, T., Tanabe, T., Saito, K., Nishizawa, J., and Ito, M., “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Review of Scientific Instruments 76, pp. 123109, 2005.CrossRefGoogle Scholar
  63. Suzuki, N., Iizuka, N., and Kaneko, K., “Calculation of Near-Infrared Intersubband Absorption Spectra in GaN/AlN Quantum Wells,” Japaneese Journal of Applied Physics 42, pp. 132, 2002.CrossRefGoogle Scholar
  64. Tanabe, T., Suto, K., Nishizawa, J., Saito, K., and Kimura, T., “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Applied Physics letters 83, pp. 237, 2003.CrossRefGoogle Scholar
  65. Unterrainer, K., Kremser, C., Gornik, E., Pidgeon, C.R., Ivanov, Y.L., and Haller, E.E., “Tunable cyclotron-resonance laser in germanium,” Physics Review Letters 64, pp. 2277, 1990.CrossRefGoogle Scholar
  66. Vasanelli, A., Leuliet, A., Sirtori, C., Wade, A., Fedorov, G., Smirnov, D., and Bastard, G., “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Applied Physics Letters 89, pp. 172120-1, 2006.CrossRefGoogle Scholar
  67. Vitiello, M.S., Scamarcio, G., Spagnolo, V., Williams, B., Kumar, S., Hu, Q., and Reno, J., “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Applied Physics Letters 86, pp. 111115-1, 2005.CrossRefGoogle Scholar
  68. Vitiello, M.S., Scamarcio, G., Spagnolo, V.,. Dhillon, S.S, and Sirtori, C., “Terahertz quantum cascade lasers with large wall-plug efficiency,” Applied Physics Letters 90, pp. 191115-1, 2007.CrossRefGoogle Scholar
  69. Vukmirović, N., Jovanović, V.D., Indjin, D., Ikonić, Z., Harrison, P., and Milanović, V., “Optically pumped terahertz laser based on intersubband transitions in a GaN/AlGaN double quantum well,” Journal of Applied Phycis 97, pp. 103106-1, 2005.CrossRefGoogle Scholar
  70. Wade,A., Fedorov, G., Smirnov, D., Kumar, S., Williams, B.S., Hu, Q., and Reno, J.L., “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nature Photonics 3, pp. 41, 2008.CrossRefGoogle Scholar
  71. Waki, I., Kumtornkittikul, C., Shimogaki, Y., and Nakano, Y., “Shortest intersubband transition wavelength (1.68 µm) achieved in AlN/GaN multiple quantum wells by metalorganic vapor phase epitaxy,” Applied Physics Letters 82, pp. 4465, 2003CrossRefGoogle Scholar
  72. Waki, I., Kumtornkittikul, C., Shimogaki, Y., and Nakano, Y., “Erratum: "Shortest intersubband transition wavelength (1.68 µm) achieved in AlN/GaN multiple quantum wells by metalorganic vapor phase epitaxy" [Appl. Phys. Lett. 82, 4465 (2003)],” Applied Physics Letters 84, pp. 3703, 2003.CrossRefGoogle Scholar
  73. Williams, B.S., Callebaut, H., Kumar, S., Hu, Q., and Reno, J.L., “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Applied Physics Letters 82, pp. 1015, 2003.CrossRefGoogle Scholar
  74. Williams, B.S., Kumar, S., Callebaut, H., Hu, Q., and Reno, J.L., “Terahertz quantum-cascade laser operating up to 137 K,” Applied Physics Letters 83, pp. 5142, 2003.CrossRefGoogle Scholar
  75. Williams, B.S., Kumar, S., Callebaut, H., Hu, Q., and Reno, J.L., “Terahertz quantum-cascade laser at λ ~ 100 µm using metal waveguide for mode confinement,” Applied Physics Letters 83, pp. 2124, 2003.CrossRefGoogle Scholar
  76. Williams, B.S., “Terahertz quantum-cascade lasers,” Nature photonics 1, pp. 517, 2007.CrossRefGoogle Scholar
  77. Woolard, D.L., Globus, T.R., Gelmont, B.L., Bykhovskaia, M., Samuels, A.C., Cookmeyer, D., Hesler, J.L., Crowe, T.W., Jensen, J.O., Jensen, J.L., and Loerop, W.R., “Submillimeter-wave phonon modes in DNA macromolecules,” Physics Review E 65, pp. 051903, 2002.CrossRefGoogle Scholar
  78. Woolard, D.L., Brown, E.R., Samuels, A.C., Jensen, J.O., Globus, T., Gelmont, B., and Wolski, M., “Terahertz-frequency remote-sensing of biological warfare agents,” IEEE MTT-S Digest, pp. 763, 2003.Google Scholar

Further reading

  1. Miles, R.E., Harrison, P., and Lippens, D., Terahertz Sources and Systems, Springer, 2001Google Scholar
  2. Kiyomi Sakai and Jōhō Tsūshin Kenkyū Kikō, Terahertz optoelectronics, Birkhäuser, 2005.Google Scholar
  3. Redo-Sanchez, A., and Xi-Cheng Zhang, “Terahertz Science and Technology Trends,” IEEE Journal of Selected Topics in Quantum Electronics 14, pp. 260, 2008.CrossRefGoogle Scholar
  4. Kumar, S., and Lee, A.W.M., “Resonant-Phonon Terahertz Quantum-Cascade Lasers and Video-Rate Terahertz Imaging,” IEEE Journal of Selected Topics in Quantum Electronics 14, pp. 333, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Manijeh Razeghi
    • 1
  1. 1.Walter P. Murphy Professor of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations