Advertisement

Single-Photon Avalanche Photodiodes

  • Manijeh Razeghi
Chapter

Abstract

The detection of single photons has attracted the attention of scientists for many years. Applications such as Raman spectroscopy, fluorescence spectroscopy, or quantum key distribution require the use of devices with such level of sensitivity. Thanks to their high internal gain, photomultiplier tubes were the first devices to demonstrate single-photon counting capabilities. However, their high volume and required voltages soon encouraged the search for new devices.

Keywords

Breakdown Voltage Apply Physic Letter Avalanche Photodiode Multiplication Gain Noise Equivalent Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, X., McIntosh, D., Liu, H. and Campbell, J.C., “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photonic Technology Letters 19, pp. 1822-1824, 2007.CrossRefGoogle Scholar
  2. Baraff, G.A., “Distribution functions and ionization rates for hot electrons in semiconductors,” Physical Review 128, pp. 2507-2517, 1962.CrossRefGoogle Scholar
  3. Bennett, C.H., Bessett, F., Brassard, G., Salvail, L. and Smolin, J., “Experimental Quantum Cryptography”, Journal of Cryptography 5, pp. 3-28, 1992.Google Scholar
  4. Chynoweth, A.G. and McKay, K.G., “Photon emission from avalanche breakdown in silicon,” Physical Review 102, pp. 369-376, 1956.CrossRefGoogle Scholar
  5. Cova, S., Ghioni, M., Lacaita, A., Samori, C. and Zappa, F., “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics 35, pp. 1956-1976, 1996.CrossRefGoogle Scholar
  6. Daudet H., Deschamps P., Dion B., MacGregor A.D., MacSween D., McIntyre R.J., Trottier C. and Webb P.P., “Photon counting techniques with silicon avalanche photodiodes,” Applied Optics 32, pp. 3894-3900, 1993.Google Scholar
  7. Gullikson E.M., Gramsch E. and Szawlowski M., “Large-area avalanche photodiodes for the detection of soft x-rays,” Applied Optics 34, pp. 4662-4668, 1995.CrossRefGoogle Scholar
  8. Hiskett, P.A., Smith, J.M., Buller, G.S. and Townsend, P.D., “Low-noise single-photon detection at wavelength 1.55 µm,” Electronics Letters 37, pp. 1081 (2001).CrossRefGoogle Scholar
  9. Liu, Y., Forrest, S.R., Hladky, J., Lange, M.J., Olsen, G.H. and Ackley, D.E., “A Planar InP/InGaAs Avalanche Photodiode with Floating Guard Ring and Double Diffused Junction,” Journal of Lightwave Technology 10, pp. 182-193, 1992.CrossRefGoogle Scholar
  10. McClintock, R., Pau, J.L., Minder, K., Bayram, C., Kung, P. and Razeghi, M., “Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes,” Applied Physics Letters 90, p. 141112, 2007.CrossRefGoogle Scholar
  11. McIntyre, R.J., “Multiplication noise in uniform avalanche diodes,” IEEE Transactions on Electron Devices ED-13, pp. 164-168, 1966.CrossRefGoogle Scholar
  12. Minder, K, Pau, J.L., McClintock, R., Kung, P., Bayram, C. and Razeghi, M., “Scaling in back-illuminated GaN avalanche photodiodes,” Applied Physics Letters 91, p. 073513, 2007.CrossRefGoogle Scholar
  13. Nightingale, N.S., “A new silicon avalanche photodiode photon counting detector for astronomy,” Exploratory Astronomy 1, pp. 407-422, 1991.CrossRefGoogle Scholar
  14. Pau, J.L., McClintock, R., Minder, K., Bayram, C., Kung, P., Razeghi, M., Muñoz, E. and Silversmith, D., “Geiger-mode operation of back-illuminated GaN avalanche photodiodes,” Applied Physics Letters 91, p. 041104, 2007CrossRefGoogle Scholar
  15. Shockley, W., “Problems related top-n junctions in silicon,” Czechosolvak Journal of Physics B11, pp. 81-121, 1961.CrossRefGoogle Scholar
  16. Webb, P.P. and Mclntyre, R.J., “Single Photon Detection with Avalanche Photodiodes,” Bulletin of the American Physical Society 15, p. 813, 1970.Google Scholar
  17. Wolff, P.A., “Theory of Electron Multiplication in Silicon and Germanium,” Physical Review 95, pp. 1415-1420, 1954.CrossRefGoogle Scholar

Further reading

  1. Cova, S., Ghioni, M., Lacaita, A., Samori, C. and Zappa, F., “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics 35, pp. 1956-1976, 1996.CrossRefGoogle Scholar
  2. Donnelly, J.P., Duerr, E.K., McIntosh, K.A., Dauler, E.A., Oakley, D.C., Groves, S.H., Vineis, C.J., Mahoney, L.J., Molvar, K.M., Hopman, P.I., Jensen, K.E., Smith, G.M., Verghese, S. and Shaver, D.C., “Design Considerations for 1.06µm InGaAsP-InP Geiger-Mode Avalanche Photodiodes,” IEEE Journal of Quantum Electronics 42, pp. 797-809, 2006.CrossRefGoogle Scholar
  3. Stillman, G.E. and Wolfe, C.M., “Avalanche photodiodes”, Semiconductors and Semimetals, vol. 12: Infrared Detectors II, R.K. Willardson and A.C. Beer, eds., Academic, New York, 1977.Google Scholar
  4. Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Manijeh Razeghi
    • 1
  1. 1.Walter P. Murphy Professor of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations