Type-II InAs/GaSb Superlattice Photon Detectors

  • Manijeh Razeghi


In the previous two chapters, the basic concept of photodetectors and examples for photon detector families were briefly described. Among the currently developing technologies, the only three that take advantages of low dimensional properties of quantum mechanics include: Type II InAs/GaSb superlattice photodetectors, the quantum well intersubband photodetectors and the quantum dot infrared photodetector.


Focal Plane Array Apply Physic Letter Auger Recombination Mercury Cadmium Telluride Quantum Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aifer, E.H., Warner, J.H., Stine, R.R., Vurgaftman, I., Canedy, C.L., Jackson, E.M., Tischler, J.G., Meyer, J.R., Petrovykh, D.Y., and Whitman, L.J., “Passivation of W-structured type-II superlattice long-wave infrared photodiodes,” Proceedings of the SPIE 6542, pp. 654203-654212, 2007.CrossRefGoogle Scholar
  2. Cabanski, W.A., Eberhardt, K., Rode, W., Wendler, J.C., Ziegler, J., Fleissner, J., Fuchs, F., Rehm, R.H., Schmitz, J., Schneider, H., and Walther, M., “Thirdgeneration focal plane array IR detection modules and applications,” Proceedings of the SPIE 5406, pp. 184-192, 2004.CrossRefGoogle Scholar
  3. Delaunay, P.-Y., Hood, A., Nguyen, B.M., Hoffman, D., Wei, Y., and Razeghi, M., “Passivation of type-II InAs/GaSb double heterostructure,” Applied Physics Letters 91(9), pp. 091112-091113, 2007CrossRefGoogle Scholar
  4. Delaunay, P.-Y., and Razeghi, M., “High-performance focal plane array based on type-II InAs/GaSb superlattice heterostructures,” Proceedings of the SPIE 6900, pp. 69000 M-69010, 2008.Google Scholar
  5. Fuchs, F., Weimer, U., Pletschen, W., Schmitz, J., Ahlswede, E., Walther, M., Wagner, J., and Koidl, P., “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Applied Physics Letters 71(22), pp. 3251-3253, 1997.CrossRefGoogle Scholar
  6. Grein, C., Young, P., Ehrenreich, H., and McGill, T., “Auger lifetimes in ideal InGaSb/InAs superlattices,” Journal of Electronic Materials 22(8), pp. 10931096, 1993.CrossRefGoogle Scholar
  7. Grein, C.H., Cruz, H., Flatte, M.E., and Ehrenreich, H., “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Applied Physics Letters 65(20), pp. 2530-2532, 1994.CrossRefGoogle Scholar
  8. Hood, A., Delaunay, P.Y., Hoffman, D., Nguyen, B.-M., Wei, Y., Razeghi, M., and Nathan, V., “Near bulk-limited R0A of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation,” Applied Physics Letters 90(23), pp. 233513-233513, 2007.CrossRefGoogle Scholar
  9. Johnson, J.L., Samoska, L.A., Gossard, A.C., Merz, J.L., Jack, M.D., Chapman, G.R., Baumgratz, B.A., Kosai, K., and Johnson, S.M., “Electrical and optical properties of infrared photodiodes using the InAs/Ga1-xInxSb superlattice in heterojunctions with GaSb,” Journal of Applied Physics 80(2), pp. 1116-1127, 1996.CrossRefGoogle Scholar
  10. Meyer, J.R., Hoffman, C.A., Bartoli, F.J., and Ram-Mohan, L.R., “Type-II quantum-well lasers for the mid-wavelength infrared,” Applied Physics Letters 67(6), pp. 757-759, 1995.CrossRefGoogle Scholar
  11. Mohseni, H., Michel, E., Sandoen, J., Razeghi, M., Mitchel, W., and Brown, G., “Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range,” Applied Physics Letters 71(10), pp. 1403-1405, 1997.CrossRefGoogle Scholar
  12. Nguyen, B.M., Hoffman, D., Delaunay, P.-Y., and Razeghi, M., “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Applied Physics Letters 91(16), pp. 163511-163513, 2007.CrossRefGoogle Scholar
  13. Nguyen, B.M., Hoffman, D., Wei, Y., Delaunay, P.-Y., Hood, A., and Razeghi, M., “Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 μm,” Applied Physics Letters 90(23), pp. 231108-231103, 2007.CrossRefGoogle Scholar
  14. Nguyen, B.M., Hoffman, D., Huang, E.K.-W., Delaunay, P.-Y., and Razeghi, M., “Background Limited Long wavelength infrared Type-II InAs/GaSb Superlattice Photodiodes operating at 110 K,” Applied Physics Letters 93, pp. 123502-1, 2008.CrossRefGoogle Scholar
  15. Nguyen, B.M., Razeghi, M., Nathan, V., and Brown, G.J., “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proceedings of the SPIE 6479, pp. 64790S-64710, 2007.CrossRefGoogle Scholar
  16. Nguyen, J., and Razeghi, M., “Techniques for high quality SiO2 films,” Proceedings of the SPIE 6479, pp. 64791 K-64798 K, 2007.Google Scholar
  17. Piquini, P., Zunger, A., and Magri, R., “Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds,” Physical Review B (Condensed Matter and Materials Physics) 77(11), pp. 115314-115316, 2008.CrossRefGoogle Scholar
  18. Rodriguez, J.B., Plis, E., Bishop, G., Sharma, Y.D., Kim, H., Dawson, L.R., and Krishna, S., “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Applied Physics Letters 91(4), pp. 043514-043512, 2007.CrossRefGoogle Scholar
  19. Sai-Halasz, G.A., Tsu, R., and Esaki, L., “A new semiconductor superlattice,” Applied Physics Letters 30(12), pp. 651-653, 1977.CrossRefGoogle Scholar
  20. Smith, D.L., and Mailhiot, C., “Proposal for strained Type II superlattice infrared detectors,” Journal of Applied Physics 62(6), pp. 2545-2548, 1987.CrossRefGoogle Scholar
  21. Tsu, R., Chang, L.L., Sai-Halasz, G.A., and Esaki, L., “Effects of Quantum States on the Photocurrent in a ‘Superlattice’,” Physical Review Letters 34(24), pp. 1509, 1974.CrossRefGoogle Scholar
  22. Vurgaftman, I., Aifer, E.H., Canedy, C.L., Tischler, J.G., Meyer, J.R., Warner, J.H., Jackson, E.M., Hildebrandt, G., and Sullivan, G.J., “Graded band gap for dark-current suppression in long-wave infrared W-structured Type-II superlattice photodiodes,” Applied Physics Letters 89(12), pp. 121114-121113, 2006.CrossRefGoogle Scholar
  23. Walther, M., Rehm, R., Fleissner, J., Schmitz, J., Ziegler, J., Cabanski, W., and Breiter, R., “InAs/GaSb type-II short-period superlattices for advanced single and dual-color focal plane arrays,” Proceedings of the SPIE 6542, pp. 654206654208, 2007.Google Scholar
  24. Wei, Y., and Razeghi, M., “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering,” Physical Review B (Condensed Matter and Materials Physics) 69(8), pp. 085316-085317, 2004.CrossRefGoogle Scholar

Further reading

  1. Dereniak, E.L., and Boreman, G.D., Infrared Detectors and Systems, John Wiley & Sons, New York, 1996.Google Scholar
  2. Henini, M., and Razeghi, M., Handbook of infra-red detection technologies Elsevier Science Ltd., 2002.Google Scholar
  3. Hudson Jr., R.D., Infrared System Engineering, John Wiley & Sons, New York, 1969.Google Scholar
  4. Rogalski, A., Infrared Photon Detectors, Bellingham, Washington, 1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Manijeh Razeghi
    • 1
  1. 1.Walter P. Murphy Professor of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations