Single Crystal Growth

  • Manijeh Razeghi


This chapter aims to provide readers with a general concept of how materials are prepared in semiconductor research and industry. High quality materials are vital to producing high quality devices. In addition, however, technologies are also in the race for cost-effective mass production with the considerations of wafer size expansion, multiple-wafer growth and compatibility with currently existing integrated circuitry.


Molecular Beam Epitaxy Liquid Phase Epitaxy Vapor Phase Epitaxy Reflection High Energy Electron Diffraction Metalorganic Chemical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belousov, M., Volf, B., Ramer, J.C., Armour, E.A., and Gurary, A., “In situ metrology advances in MOCVD growth of GaN-based materials,” Journal of Crystal Growth 272, pp. 94-99, 2004.CrossRefGoogle Scholar
  2. Cheung, J.T., “Role of atomic tellurium in the growth kinetics of CdTe (111) homoepitaxy,” Applied Physics Letters 51(23), pp. 1940-1942, 1987.CrossRefGoogle Scholar
  3. Elliot, A.G., Flat, A., and Vanderwater, D.A., “Silicon incorporation in LEC growth of single crystal gallium arsenide,” Journal of Crystal Growth 121(3), pp. 349-359, 1992.CrossRefGoogle Scholar
  4. Gao, Y.Z., Kan, H., Gao, F.S., Gong, X.Y., and Yamaguchi, T., “Improved purity of long-wavelength InAsSb epilayers grown by melt epitaxy in fused silica boats,” Journal of Crystal Growth 234(1), pp. 85-90, 2002.CrossRefGoogle Scholar
  5. Gao, Y.Z., Gong, X.Y., Gui, Y.S., Yamaguchi, T., and Dai, N., “Electrical Properties of Melt-Epitaxy-Grown InAs0.04Sb0.96 Layers with Cutoff Wavelength of 12 μm,” Japanese Journal of Applied Physics 43(3), pp. 1051, 2004.CrossRefGoogle Scholar
  6. Gevorkyan, V.A., “A new liquid-source version of liquid phase electroepitaxy,” Journal of Crystal Growth 249(1-2), pp. 149-158, 2003.CrossRefGoogle Scholar
  7. Golubev, L.V., Egorov, A.V., Novikov, S.V., and Shmartsev, Y.V., “Liquid phase electroepitaxy of III-V semiconductors,” Journal of Crystal Growth 146(1-4), pp. 277-282, 1995.CrossRefGoogle Scholar
  8. Henini, M., and Razeghi, M., Handbook of infra-red detection technologies Elsevier Science Ltd., 2002.Google Scholar
  9. Juergensen, H., “MOCVD technology in research, development and mass production,” Materials Science in Semiconductor Processing 4(6), pp. 467-474, 2001.CrossRefGoogle Scholar
  10. Kasap, S., and Capper, P., Springer Handbook of Electronic and Photonic Materials, Springer-Verlag, New York, Inc., pp. 285, 2007.Google Scholar
  11. Kohiro, K., Ohta, M., and Oda, O., “Growth of long-length 3 inch diameter Fedoped InP single crystals,” Journal of Crystal Growth 158(3), pp. 197-204, 1996.CrossRefGoogle Scholar
  12. Meyer, M., “The Compound Semiconductor Industry in the 1990 s,” Compound Semiconductors 5, pp. 9, 1999.Google Scholar
  13. Monroy, E., Guillot, F., Leconte, S., Bellet-Amalric, E., Baumann, E., Giorgetta, F.R., and Hofstetter, D., “Plasma-assisted MBE growth of nitride-based intersubband detectors,” AIP Conference Proceedings 893(1), pp. 481-482, 2007.CrossRefGoogle Scholar
  14. Neubert, M., and Rudolph, P., “Growth of semi-insulating GaAs crystals in low temperature gradients by using the Vapour Pressure Controlled Czochralski Method (VCz),” Progress in Crystal Growth and Characterization of Materials 43(2-3), pp. 119-185, 2001.CrossRefGoogle Scholar
  15. Neubert, M., Rudolph, P., Frank-Rotsch, C., Czupalla, M., Trompa, K., Pietsch, M., Jurisch, M., Eichler, S., Weinert, B., and Scheffer-Czygan, M., “Crystal growth by a modified vapor pressure-controlled Czochralski (VCz) technique,” Journal of Crystal Growth 310(7-9), pp. 2120-2125, 2008.CrossRefGoogle Scholar
  16. Pätzold, O., Wunderwald, U., Bellmann, M., Gumprich, P. Buhrig, E., Cröll, A., ”New Developments in Vertical Gradient Freeze Growth,” Advanced Engineering Materials 6(7), pp. 554-557, 2004.CrossRefGoogle Scholar
  17. Panish, M.B., “Molecular Beam Epitaxy of GaAs and InP with Gas Sources for As and P,” Journal of The Electrochemical Society 127(12), pp. 2729-2733, 1980.CrossRefGoogle Scholar
  18. Razeghi, M., The MOCVD Challenge Volume 1: A Survey of GaInAsP-InP for Photonic and Electronic Applications, Adam Hilger, Bristol, UK, pp. 188-193, 1989.Google Scholar
  19. Razeghi, M., “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system,” Proceedings of the SPIE 7230, p. 723011, 2009.Google Scholar
  20. Rudolph, P., and Jurisch, M., “Bulk growth of GaAs An overview,” Journal of Crystal Growth 198-199(Part 1), pp. 325-335, 1999.Google Scholar
  21. Thompson, A.G., “MOCVD technology for semiconductors,” Materials Letters 30(4), pp. 255-263, 1997.CrossRefGoogle Scholar
  22. Tokumitsu, E., Kudou, Y., Konagai, M., and Takahashi, K., “Molecular beam epitaxial growth of GaAs using trimethylgallium as a Ga source,” Journal of Applied Physics 55(8), pp. 3163-3165, 1984.CrossRefGoogle Scholar
  23. Tsang, W.T., Logan, R.A., Olsson, N.A., Johnson, L.F., and Henry, C.H., “Heteroepitaxial ridge-overgrown distributed feedback laser at 1.5 μm,” Applied Physics Letters 45(12), pp. 1272-1274, 1984.CrossRefGoogle Scholar

Further reading

  1. Kasap, S., and Capper, P., Springer Handbook of Electronic and Photonic Materials, Springer-Verlag, New York, Inc., 2007.Google Scholar
  2. Razeghi, M., The MOCVD Challenge Volume 1: A Survey of GaInAsP-InP for Photonic and Electronic Applications, Adam Hilger, Bristol, UK, 1989.Google Scholar
  3. Razeghi, M., The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for photonic and electronic device applications, Institute of Physics, Bristol, UK, 1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Manijeh Razeghi
    • 1
  1. 1.Walter P. Murphy Professor of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations