Skip to main content

Single Crystal Growth

  • Chapter
  • First Online:
Technology of Quantum Devices
  • 2842 Accesses

Abstract

This chapter aims to provide readers with a general concept of how materials are prepared in semiconductor research and industry. High quality materials are vital to producing high quality devices. In addition, however, technologies are also in the race for cost-effective mass production with the considerations of wafer size expansion, multiple-wafer growth and compatibility with currently existing integrated circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belousov, M., Volf, B., Ramer, J.C., Armour, E.A., and Gurary, A., “In situ metrology advances in MOCVD growth of GaN-based materials,” Journal of Crystal Growth 272, pp. 94-99, 2004.

    Article  CAS  Google Scholar 

  • Cheung, J.T., “Role of atomic tellurium in the growth kinetics of CdTe (111) homoepitaxy,” Applied Physics Letters 51(23), pp. 1940-1942, 1987.

    Article  CAS  Google Scholar 

  • Elliot, A.G., Flat, A., and Vanderwater, D.A., “Silicon incorporation in LEC growth of single crystal gallium arsenide,” Journal of Crystal Growth 121(3), pp. 349-359, 1992.

    Article  CAS  Google Scholar 

  • Gao, Y.Z., Kan, H., Gao, F.S., Gong, X.Y., and Yamaguchi, T., “Improved purity of long-wavelength InAsSb epilayers grown by melt epitaxy in fused silica boats,” Journal of Crystal Growth 234(1), pp. 85-90, 2002.

    Article  CAS  Google Scholar 

  • Gao, Y.Z., Gong, X.Y., Gui, Y.S., Yamaguchi, T., and Dai, N., “Electrical Properties of Melt-Epitaxy-Grown InAs0.04Sb0.96 Layers with Cutoff Wavelength of 12 μm,” Japanese Journal of Applied Physics 43(3), pp. 1051, 2004.

    Article  CAS  Google Scholar 

  • Gevorkyan, V.A., “A new liquid-source version of liquid phase electroepitaxy,” Journal of Crystal Growth 249(1-2), pp. 149-158, 2003.

    Article  CAS  Google Scholar 

  • Golubev, L.V., Egorov, A.V., Novikov, S.V., and Shmartsev, Y.V., “Liquid phase electroepitaxy of III-V semiconductors,” Journal of Crystal Growth 146(1-4), pp. 277-282, 1995.

    Article  CAS  Google Scholar 

  • Henini, M., and Razeghi, M., Handbook of infra-red detection technologies Elsevier Science Ltd., 2002.

    Google Scholar 

  • Juergensen, H., “MOCVD technology in research, development and mass production,” Materials Science in Semiconductor Processing 4(6), pp. 467-474, 2001.

    Article  CAS  Google Scholar 

  • Kasap, S., and Capper, P., Springer Handbook of Electronic and Photonic Materials, Springer-Verlag, New York, Inc., pp. 285, 2007.

    Google Scholar 

  • Kohiro, K., Ohta, M., and Oda, O., “Growth of long-length 3 inch diameter Fedoped InP single crystals,” Journal of Crystal Growth 158(3), pp. 197-204, 1996.

    Article  CAS  Google Scholar 

  • Meyer, M., “The Compound Semiconductor Industry in the 1990 s,” Compound Semiconductors 5, pp. 9, 1999.

    Google Scholar 

  • Monroy, E., Guillot, F., Leconte, S., Bellet-Amalric, E., Baumann, E., Giorgetta, F.R., and Hofstetter, D., “Plasma-assisted MBE growth of nitride-based intersubband detectors,” AIP Conference Proceedings 893(1), pp. 481-482, 2007.

    Article  CAS  Google Scholar 

  • Neubert, M., and Rudolph, P., “Growth of semi-insulating GaAs crystals in low temperature gradients by using the Vapour Pressure Controlled Czochralski Method (VCz),” Progress in Crystal Growth and Characterization of Materials 43(2-3), pp. 119-185, 2001.

    Article  CAS  Google Scholar 

  • Neubert, M., Rudolph, P., Frank-Rotsch, C., Czupalla, M., Trompa, K., Pietsch, M., Jurisch, M., Eichler, S., Weinert, B., and Scheffer-Czygan, M., “Crystal growth by a modified vapor pressure-controlled Czochralski (VCz) technique,” Journal of Crystal Growth 310(7-9), pp. 2120-2125, 2008.

    Article  CAS  Google Scholar 

  • Pätzold, O., Wunderwald, U., Bellmann, M., Gumprich, P. Buhrig, E., Cröll, A., ”New Developments in Vertical Gradient Freeze Growth,” Advanced Engineering Materials 6(7), pp. 554-557, 2004.

    Article  CAS  Google Scholar 

  • Panish, M.B., “Molecular Beam Epitaxy of GaAs and InP with Gas Sources for As and P,” Journal of The Electrochemical Society 127(12), pp. 2729-2733, 1980.

    Article  CAS  Google Scholar 

  • Razeghi, M., The MOCVD Challenge Volume 1: A Survey of GaInAsP-InP for Photonic and Electronic Applications, Adam Hilger, Bristol, UK, pp. 188-193, 1989.

    Google Scholar 

  • Razeghi, M., “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system,” Proceedings of the SPIE 7230, p. 723011, 2009.

    Google Scholar 

  • Rudolph, P., and Jurisch, M., “Bulk growth of GaAs An overview,” Journal of Crystal Growth 198-199(Part 1), pp. 325-335, 1999.

    Google Scholar 

  • Thompson, A.G., “MOCVD technology for semiconductors,” Materials Letters 30(4), pp. 255-263, 1997.

    Article  CAS  Google Scholar 

  • Tokumitsu, E., Kudou, Y., Konagai, M., and Takahashi, K., “Molecular beam epitaxial growth of GaAs using trimethylgallium as a Ga source,” Journal of Applied Physics 55(8), pp. 3163-3165, 1984.

    Article  CAS  Google Scholar 

  • Tsang, W.T., Logan, R.A., Olsson, N.A., Johnson, L.F., and Henry, C.H., “Heteroepitaxial ridge-overgrown distributed feedback laser at 1.5 μm,” Applied Physics Letters 45(12), pp. 1272-1274, 1984.

    Article  CAS  Google Scholar 

Further reading

  • Kasap, S., and Capper, P., Springer Handbook of Electronic and Photonic Materials, Springer-Verlag, New York, Inc., 2007.

    Google Scholar 

  • Razeghi, M., The MOCVD Challenge Volume 1: A Survey of GaInAsP-InP for Photonic and Electronic Applications, Adam Hilger, Bristol, UK, 1989.

    Google Scholar 

  • Razeghi, M., The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for photonic and electronic device applications, Institute of Physics, Bristol, UK, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Razeghi, M. (2010). Single Crystal Growth. In: Technology of Quantum Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1056-1_1

Download citation

Publish with us

Policies and ethics