Advertisement

Proteins

  • Hans Frauenfelder
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

A protein is a linear chain built from 20 amino acids [1]–[6]. (A few rare amino acids occur occasionally, but we will not discuss them.) The chain contains at the order of 100 to 200 amino acids. Of particular interest are the globular proteins, which act, for instance, as enzymes (catalysis). In the proper solvent, these systems fold into the native protein, as sketched in Fig. 4.1.

Keywords

Heme Protein Alpha Helix Heme Group Family Tree Iron Porphyrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Dickerson and I. Geis. The Structure Action of Proteins. Benjamin/Cummings, Menlo Park, CA, 1969.Google Scholar
  2. 2.
    J. M. Berg, J. L. Tymoczko, and L. Stryer. Biochemistry, 6th edition. W. H. Freeman, New York, 2006.Google Scholar
  3. 3.
    C. R. Cantor and P. R. Schimmel. Biophysical Chemistry. W. H. Freeman, San Francisco, 1980. 3 vols.Google Scholar
  4. 4.
    C. Brändén and J. Tooze. Introduction to Protein Structure. Garland Science, New York, 1991.Google Scholar
  5. 5.
    G. E. Schulz and R. H. Schirmer. Principles of Protein Structure. Springer, New York, 1996.Google Scholar
  6. 6.
    G. A. Petsko and D. Ringe. Protein Structure and Function. New Science Press, London, 2004.Google Scholar
  7. 7.
    For a review see L. Keszthelyi, Origin of the asymmetry of biomolecules and weal interaction, Origins of Life, 8:299–340, 1977.Google Scholar
  8. 8.
    C. Fenselau. Beyond gene sequencing: Analysis of protein structure with mass spectrometry. Ann. Rev. Biophys. Biophys. Chem., 20:205–20, 1991.CrossRefGoogle Scholar
  9. 9.
    P. L. Ferguson and R. D. Smith. Proteome analysis by mass spectrometry. Ann. Rev. Biophys. Biomol. Struct., 32:399–424, 2003.CrossRefGoogle Scholar
  10. 10.
    P. C. Hanawalt and R. H. Hanes, editors. The Chemical Basis of Life. W. H. Freeman, San Francisco, 1973. Readings from Scientific American.Google Scholar
  11. 11.
  12. 12.
    K. M. Smith, editor. Porphyrins and Metalloporphyrins. Elsevier, New York, 1975.Google Scholar
  13. 13.
    D. Dolphin, editor. The Porphyrins. Academic Press, New York, 1979. 7 vols.Google Scholar
  14. 14.
    A. B. P. Lever and H. B. Gray, editors. Iron Porphyrins. Addison-Wesley, New York, 1983. 3 vols.Google Scholar
  15. 15.
    R. E. Dickerson and I. Geis. Hemoglobin: Structure, Function, Evolution and Pathology. Benjamin-Cummings, Menlo Park, CA, 1983.Google Scholar
  16. 16.
    H. Frauenfelder, B. H. McMahon, R. H. Austin, K. Chu, and J. T. Groves. The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proc. Natl. Acad. Sci. USA, 98:2370–74, 2001.ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    F. M. Richards. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng., 6:151–76, 1977.CrossRefGoogle Scholar
  19. 19.
    J. A. Berzofsky. Intrinsic and extrinsic factors in protein antigenic structure. Science, 229:932–40, 1985.ADSCrossRefGoogle Scholar
  20. 20.
    H. Lodish, D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell. Molecular Cell Biology, 3rd edition. W. H. Freeman, New York, 1995.Google Scholar
  21. 21.
    M. F. Perutz. The hemoglobin molecule. Sci. Amer., 211(11):2–14, 1964.Google Scholar
  22. 22.
    M. F. Perutz. Hemoglobin structure and respiratory transport. Sci. Amer., 239(6):92–125, 1978.CrossRefGoogle Scholar
  23. 23.
    M. Weissbluth. Hemoglobin. Springer, New York, 1974.CrossRefGoogle Scholar
  24. 24.
    M. F. Perutz. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophysics, 22:139–236, 1989. Reprinted as Mechanisms of Cooperativity and Allosteric Regulation in Proteins, Cambridge Univ. Press, Cambridge, 1990.CrossRefGoogle Scholar
  25. 25.
    R. A. Bogardt, B. N. Jones, F. E. Dwulet, W. H. Garner, L. D. Lehman, and F. R. N. Gurd. Evolution of the amino acid substitution in the mammalian myoglobin gene. J. Mol. Evol., 15:197–218, 1980.CrossRefGoogle Scholar
  26. 26.
    M. F. Perutz. Species adaptation in a protein molecule. Mol. Bio. Evol., 1:1–28, 1983.Google Scholar
  27. 27.
    A. C. T. North and J. E. Lydon. The evolution of biological macromolecules. Contemp. Phys., 25:381–93, 1984.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hans Frauenfelder
    • 1
  1. 1.Theory DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations