• Hans Frauenfelder
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Assume that the energy landscape of a biomolecule is as shown in Fig. 27.1, where the energy of the biomolecule is plotted as a function of the conformational coordinate cc. We note again that the figure is misleading; the actual energy hypersurface is a function of a very large number of coordinates, and Fig. 27.1 only gives a one-dimensional cross section.


Raman Scattering Beam Splitter Diatomic Molecule Raman Line Michelson Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Herzberg. Spectra of Diatomic Molecules. Van Nostrand, New York, 1950.Google Scholar
  2. 2.
    G. Herzberg. Infrared and Raman Spectra. Van Nostrand, New York, 1945.Google Scholar
  3. 3.
    E. B. Wilson, J. C. Decius, and P. C. Cross. Molecular Vibrations. Dover, New York, 1955, 1980.Google Scholar
  4. 4.
    M. Tinkham. Group Theory and Quantum Mechanics. McGraw-Hill, New York, 1964. pp. 234–8.MATHGoogle Scholar
  5. 5.
    L. I. Schiff. Quantum Mechanics. McGraw-Hill, New York, 1968, pp. 451–3.Google Scholar
  6. 6.
    L. J. Bellamy. The Infra-red Spectra of Complex Molecules, 3rd edition. Wiley, New York, 1975.CrossRefGoogle Scholar
  7. 7.
    R. J. Bell. Introductory Fourier Transform Spectroscopy. Academic Press, New York, 1972.Google Scholar
  8. 8.
    J. R. Ferraro and L. J. Basile, editors. Fourier Transform Infrared Spectroscopy. Academic Press, New York, 1982.Google Scholar
  9. 9.
    P. R. Griffiths. Fourier-transform infrared spectrometry. Science, 222(4621):297–302, 1983.ADSCrossRefGoogle Scholar
  10. 10.
    J. O. Alben and F. Fiamingo. Fourier transform infrared spectroscopy. In D. L. Rousseau, editor, Optical Techniques in Biological Research. Academic Press, New York, 1985.Google Scholar
  11. 11.
    For introductions, see M. Karplus and R. N. Porter. Atoms and Molecules, W. A. Benjamin, New York, 1970; or J. Steinfeld. Molecules and Radiation, 2nd edition. MIT Press, Cambridge, 1985.Google Scholar
  12. 12.
    D. A. Long. Raman Spectroscopy. McGraw-Hill, New York, 1977.Google Scholar
  13. 13.
    A. Weber, editor. Raman Spectroscopy of Gases and Liquids (Topics in Current Physics, Vol. 11). Springer, Berlin, 1979.Google Scholar
  14. 14.
    R. H. Felton and N. T. Yu. Resonance Raman scattering from mtealloporphyrins and hemoproteins. In D. Dolphin, editor, The Porphyrins, Vol. III. Academic Press, New York, 1978. Chapter 8.Google Scholar
  15. 15.
    T. G. Spiro. The resonance Raman spectroscopy of metalloporphyrins and hemoproteins. In A. B. P. Lever and H. B. Gray, editors, Iron Porphyrins, Vol. II. Addison-Wesley, Reading, MA, 1983. Chapter 3Google Scholar
  16. 16.
    T. G. Spiro and T. C. Strekas. Resonance Raman spectra of hemoglobin and cytochrome c: Inverse polarization and vibronic scattering. Proc. Natl. Acad. Sci. USA, 69:2622–6, 1972.ADSCrossRefGoogle Scholar
  17. 17.
    D. Rousseau, editor. Optical Techniques in Biological Research. Academic Press, New York, 1985.Google Scholar
  18. 18.
    D. L. Rousseau and M. R. Ondrias. Resonance Raman scattering studies of the quaternary structure transition in hemoglobin. Ann. Rev. Biophys. Bioeng., 12:357–80, 1983.CrossRefGoogle Scholar
  19. 19.
    J. M. Friedman. Structure, dynamics and reactivity in hemoglobin. Science, 228(4705):1273–80, 1985.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hans Frauenfelder
    • 1
  1. 1.Theory DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations