Protein Dynamics

  • Hans Frauenfelder
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Proteins are not static as shown in texts; they fluctuate continuously. Moreover, the “working protein” consists not only of the folded chain of amino acids. Proteins are surrounded by their hydration shell and are embedded in a bulk solvent. The protein proper, the hydration shell, and the bulk solvent are all involved in the protein motions and all three are necessary for the functions. Protein motions are transitions between different conformational substates that are described by the energy landscape (EL ). The energy landscape has already been introduced and will be described in more detail in the present chapter. The experimental exploration of the EL is largely done by studying protein motions. We have therefore put the cart before the horse by treating the EL first. The reason is logic. Once the concept of a hierarchical EL is accepted, the existence of various types of motions is a logical consequence.


Hydration Shell Energy Landscape Protein Motion Heme Iron Internal Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. E. T. Iben et al. Glassy behavior of a protein. Phys. Rev. Lett., 62:1916–19, 1989.ADSCrossRefGoogle Scholar
  2. 2.
    J. L. Green, J. Fan, and C. A. Angell. The protein-glass analogy: Some insights from homopeptide comparisons. J. Phys. Chem., 98:13780–90, 1994.CrossRefGoogle Scholar
  3. 3.
    G. I. Makhatadze and P. L. Privalov. Energetics of protein structure. Advan. Protein Chem., 47:307–425, 1994.CrossRefGoogle Scholar
  4. 4.
    G. Sartor, A. Hallbrucker, and E. Mayer. Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass?liquid transition and crystallization behavior on reheating. Biophys. J., 69:2679–94, 1995.ADSCrossRefGoogle Scholar
  5. 5.
    D. Idiyatullin, I. Nesmelova, V. A. Dargan, and K H. Mayo. Heat capacities and a snapshot of the energy landscape in protein GB1 from the pre-denaturation temperature dependence of backbone NH nanosecond fluctuations. J. Mol. Bio., 325:149–62, 2003.CrossRefGoogle Scholar
  6. 6.
    G. Feher and M. Weissman. Fluctuation spectroscopy: Determination of chemical reaction kinetics from the frequency spectrum of fluctuations. Proc. Natl. Acad. Sci. USA, 70:870–5, 1973.ADSCrossRefGoogle Scholar
  7. 7.
    M. B. Weissman. Fluctuation spectroscopy. Ann. Rev. Phys. Chem., 32:205–32, 1981.ADSCrossRefGoogle Scholar
  8. 8.
    G. U. Nienhaus, editor. Protein-Ligand Interactions. Humana Press, Totowa, N.J., 2005.Google Scholar
  9. 9.
    M. Eigen. New looks and outlooks on physical enzymology. Q. Rev. Biophys., 1:3–33, 1968.CrossRefGoogle Scholar
  10. 10.
    R. Richert and A. Blumen, editors. Disorder Effects on Relaxational Processes. Springer, Berlin, 1994.Google Scholar
  11. 11.
    M. D. Fayer. Fast protein dynamics probed with infrared vibrational echo experiments. Ann. Rev. Phys. Chem., 52:315–56, 2001.ADSCrossRefGoogle Scholar
  12. 12.
    H. Fujisaki and J. E. Straub. Vibrational energy relaxation in proteins. Proc. Natl. Acad. Sci. USA, 102:6726–31, 2005.ADSCrossRefGoogle Scholar
  13. 13.
    M. Gruebele and P. G. Wolynes. Vibrational energy flow and chemical reactions. Acc. Chem. Res., 37:261–7, 2004.CrossRefGoogle Scholar
  14. 14.
    Q. Ciu and I. Bahar, editors. Normal Mode Analysis. Theory and Applications to Biological and Chemical Systems. Chapman and Hall/CRC, New York, 2006.Google Scholar
  15. 15.
    C. Kittel. Introduction to Solid State Physics, 4th edition. Wiley, New York, 1971.Google Scholar
  16. 16.
    K. Hinsen. Normal mode theory and harmonic potential approximations. In Q. Ciu and I. Bahar, editors, Normal Mode Analysis. Theory and Applications to Biological and Chemical Systems. Chapman and Hall/CRC, New York, 2006.Google Scholar
  17. 17.
    B. Melchers, E. W. Knapp, F. Parak, L. Cordone, A. Cupane, and M. Leone. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys. J., 70:2092–9, 1996.ADSCrossRefGoogle Scholar
  18. 18.
    K. Achterhold, C. Keppler, A. Ostermann, U. van Buerck, W. Sturhan, E. E. Alp, and F. G. Parak. Vibrational dynamics of myoglobin determined by the phonon-assisted Mössbauer effect. Phys. Rev. E., 65:061916, 2002.ADSCrossRefGoogle Scholar
  19. 19.
    B. M. Leu et al. Vibrational dynamics of biological molecules: Multi-quantum contributions. J. Phys. Chem. Solids, 66:2250–6, 2005.ADSCrossRefGoogle Scholar
  20. 20.
    A. E. Garcia. Large-amplitude nonlinear motions in proteins. Phys. Rv. Lett., 68:2696–9, 1992.ADSCrossRefGoogle Scholar
  21. 21.
    A. Kitao, S. Hayward, and N. Go. Energy landscape of a native protein: Jumping-among-minima model. PROTEINS: Structure, Function, and Genetics, 33:496–517, 1998.CrossRefGoogle Scholar
  22. 22.
    O. M. Becker, A. D. MacKerell, Jr., B. Roux, and M. Watanabe, editors. Computational Biochemistry and Biophysics. Marcel Decker, Inc., New York, 2001.Google Scholar
  23. 23.
    A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young. Protein states and protein quakes. Proc. Natl. Acad. Sci. USA, 82:5000–4, 1985.ADSCrossRefGoogle Scholar
  24. 24.
    T.-Y. Teng, V. Srajer, and K. Moffat. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nature Structural Biology, 1:701–5, 1994.CrossRefGoogle Scholar
  25. 25.
    D. Bourgeois, B Vallone, A. Arcovito, G. Sciara, F. Schotte, P. A. Anfinrud, and M. Brunori. Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography. Proc. Natl. Acad. Sci. USA, 103:4924–9, 2006.ADSCrossRefGoogle Scholar
  26. 26.
    R. J. Miller. Energetics and dynamics of deterministic protein motion. Acc. Chem. Res., 27:145–50, 1994.CrossRefGoogle Scholar
  27. 27.
    A. M. Nagy, V. Raicu, and R. J. D. Miller. Nonlinear optical studies of heme protein dynamics: Implications for proteins as hybrid states of matter. Biochimica et Biophysica Acta, 1749:148–72, 2005.CrossRefGoogle Scholar
  28. 28.
    A. Xie, L. Kelemen, J. Hendriks, B. J. White, K. J. Hellingwerf, and W. D. Hoff. Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation. Biochemistry, 40:1510–7, 2001.CrossRefGoogle Scholar
  29. 29.
    K. Ito and M. Sasai. Dynamical transition and protein quake in photoactive yellow protein. Proc. Natl. Acad. Sci. USA, 101:14736–41, 2004.ADSCrossRefGoogle Scholar
  30. 30.
    J. N. Onuchic and P. G. Wolynes. Energy landscapes, glass transitions, and chemical reaction dynamics in biomolecular or solvent environment. J. Chem. Phys., 93:2218–24, 1993.ADSCrossRefGoogle Scholar
  31. 31.
    S. Dellerue, A.-J. Petrescu, J. C. Smith, and M.-C. Bellissent-Funel. Radially softening diffusive motions in globular protein. Biophys. J., 81:1666–76, 2001.CrossRefGoogle Scholar
  32. 32.
    N. Miyashita, J. N. Onuchic, and P. G. Wolynes. Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc. Natl. Acad. Sci. USA, 100:12570–5, 2003.Google Scholar
  33. 33.
    O. Miyashita, P. G. Wolynes, and J. N. Onuchic. Simple energy landscape model for the kinetics of functional transitions in proteins. J. Phys. Chem. B, 109:1959–69, 2005.CrossRefGoogle Scholar
  34. 34.
    K. Okazaki, N. Koga, S. Takada, J. N. Onuchic, and P. G. Wolynes. Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics silmulations. Proc. Natl. Acad. Sci. USA, 103:11844–9, 2006.Google Scholar
  35. 35.
    N. Agmon and J. J. Hopfield. Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: Intramolecular processes with slow conformational changes. J. Chem. Phys., 78:6947–59, 1983.ADSCrossRefGoogle Scholar
  36. 36.
    N. Agmon and J. J. Hopfield. CO binding to heme proteins: A model for barrier height distributions and slow conformational changes. J. Chem. Phys., 79:2042–53, 1983.ADSCrossRefGoogle Scholar
  37. 37.
    M. Lim, T. A. Jackson, and P. A. Anfinrud. Nonexponential protein relaxation: Dynamics of conformational change in myoglobin. Proc. Natl. Acad. Sci. USA, 90:5801–4, 1993.ADSCrossRefGoogle Scholar
  38. 38.
    D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, L. Reinisch, A. H. Reynolds, L. B. Sorenson, and K. T. Yue. Solvent viscosity and protein dynamics. Biochemistry, 19:5147, 1980.CrossRefGoogle Scholar
  39. 39.
    W. Doster. Viscosity scaling and protein dynamics. Biophys. Chem., 17:97–103, 1983.CrossRefGoogle Scholar
  40. 40.
    J. T. Sage, K. T. Shoemaker, and P. M. Champion. Solvent-dependent structure and dynamics in myoglobin. J. Phys. Chem., 99:3394–3405, 1995.CrossRefGoogle Scholar
  41. 41.
    T. Kleinert, W. Doster, H. Leyser, W. Petry, V. Schwarz, and M. Settles. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin. Biochemistry, 37:717–33, 1998.CrossRefGoogle Scholar
  42. 42.
    Y. Shibata, A. Kurita, and T. Kushida. Solvent effects on conformational dynamics of Zn-substituted myoglobin observed by time-resolved hole-burning spectroscopy. Biochemistry, 38:1789–1801, 1999.CrossRefGoogle Scholar
  43. 43.
    A. Ansari. Langevin modes analysis of myoglobin. J. Chem. Phys., 110:1774–80, 1999.ADSCrossRefGoogle Scholar
  44. 44.
    P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Parak. Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA, 99:16047–51, 2002.ADSCrossRefGoogle Scholar
  45. 45.
    P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and R. D. Young. Proteins are paradigms of stochastic complexity. Physica A, 351:1–13, 2005.ADSCrossRefGoogle Scholar
  46. 46.
    W. Doster, S. Cusack, and W. Petry. Dynamic instability of liquidlike motions in a globular protein observed by inelastic neutron scattering. Phys. Rev. Lett., 65:1080–3, 1990.ADSCrossRefGoogle Scholar
  47. 47.
    K. Hinsen, A. J. Petrescu, S. Dellerue, M. C. Bellissent-Funel, and G. R. Keller. Liquid-like and solid-like motions in proteins. J. Mol. Liquids, 98-99:381–98, 2002.CrossRefGoogle Scholar
  48. 48.
    H. Frauenfelder, P. W. Fenimore, G. Chen, and B. H. McMahon. Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA, 103:15469–72, 2006.ADSCrossRefGoogle Scholar
  49. 49.
    V. Lubchenko, P. G. Wolynes, and H. Frauenfelder. Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. J. Phys. Chem. B, 109:7488–99, 2005.CrossRefGoogle Scholar
  50. 50.
    P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and R. D. Young. Bulk-solvent and hydration-shell fluctuations, similar to ?- and ?-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA, 101:14408–13, 2004.ADSCrossRefGoogle Scholar
  51. 51.
    R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. Dynamics of ligand binding to myoglobin. Biochemistry, 14:5355–73, 1975.CrossRefGoogle Scholar
  52. 52.
    J. A. Rupley and G. Careri. Protein hydration and function. Adv. Protein Chem., 41:37–172, 1991.CrossRefGoogle Scholar
  53. 53.
    B. Halle. Protein hydration dynamics in solution: A critical survey. Phil. Trans. R. Soc. Lond. B, 359:1207–24, 2004.CrossRefGoogle Scholar
  54. 54.
    Y. Levy and J. N. Onuchic. Water mediation in protein folding and molecular recognition. Ann. Rev. Biophys. Biomol. Struct., 35:398–415, 2006.CrossRefGoogle Scholar
  55. 55.
    V. Helms. Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules. ChemPhysChem., 8:23–33, 2007.CrossRefGoogle Scholar
  56. 56.
    H. Frauenfelder, G. Chen, J. Berendzen, P. W. Fenimore, H. Jansson, B. H. McMahon, I. R. Stroe, J. Swenson, and R. D. Young. A unified model of protein dynamics. Proc. Natl. Acad. Sci. USA, 106: 5129–5134, 2009.ADSCrossRefGoogle Scholar
  57. 57.
    J. Swenson, H. Jansson, and R. Bergman. Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett., 96:247802, 1992.ADSCrossRefGoogle Scholar
  58. 58.
    F. Parak, E. W. Knapp, and D. Kucheida. Protein dynamics–Mössbauer spectroscopy on deoxymyoglobin crystals. J. Mol. Bio., 161:177–94, 1982.CrossRefGoogle Scholar
  59. 59.
    W. Doster, S. Cusack, and W. Petry. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 337:754–6, 1989.ADSCrossRefGoogle Scholar
  60. 60.
    V. I. Goldanski and R. H. Herber, editors. Chemical Applications of Mössbauer Spectroscopy. Academic Press, New York, 1968.Google Scholar
  61. 61.
    K. Achterhold and F. G. Parak. Protein dynamics: Determination of anisotropic vibrations at the heme iron of myoglobin. J. Phys. : Condens Matter, 15:S1603–92, 2003.Google Scholar
  62. 62.
    S.-H. Chong et al. Dynamical transition in myoglobin in a crystal: Comparative studies of X-ray crystallography and Mössbauer spectroscopy. Eur. Biophys. J., 30:319–29, 2001.CrossRefGoogle Scholar
  63. 63.
    J. Gafert, H. Pschierer, and J. Friedrich. Proteins and glasses: A relaxation study in the millikelvin range. Phys. Rev. Lett., 74:3704–7, 1995.ADSCrossRefGoogle Scholar
  64. 64.
    W. E. Moerner. Persistent Spectral Hole-Burning: Science and Applications. Springer, Berln, 1988.CrossRefGoogle Scholar
  65. 65.
    P. Schellenberg and J. Friedrich. Optical spectroscopy and disorder phenomena in polymers, proteins, and glasses. In R. Richert and A. Blumen, editors, Disorder Effects on Relaxational Processes. Springer, Berlin, 1994.Google Scholar
  66. 66.
    A. Kurita, Y. Shibata, and T. Kushida. Two-level systems in myoglobin probed by non-Lorentzian hole broadening in a termperature-cycling experiment. Phys. Rev. Lett., 74:4349–52, 1995.ADSCrossRefGoogle Scholar
  67. 67.
    V. V. Ponkratov, J. Friedrich, J. M. Vanderkooi, A. L. Burin, and Y. A. Berlin. Physics of proteins at low temperatures. J. Low Temperature Phys., 137:289–317, 2004.ADSCrossRefGoogle Scholar
  68. 68.
    V. V. Ponkratov, J. Friedrich, and J. M. Vanderkooi. Hole burning experiments with proteins: Relaxations, fluctuations, and glass-like features. J. Non-Cryst. Solids, 352:4379–86, 2006.ADSCrossRefGoogle Scholar
  69. 69.
    C. Hofmann, H. Michel, T. J. Aartsma, K. D. Fritsch, and J. Friedrich. Direct observation of tiers in the energy landscape of a chromoprotein. Proc. Natl. Acad. Sci. USA, 100:15534–8, 2003.Google Scholar
  70. 70.
    J. Schlichter, V. V. Ponkratov, and J. Friedrich. Structural flucuations and aging process in deeply frozen proteins. Low Temperature Physics, 29:795–800, 2003.ADSCrossRefGoogle Scholar
  71. 71.
    K. Fritsch and J. Friedrich. Spectral diffusion experiments on a myoglobin-like protein: Statistical and individual features of its energy landscape. Physica D, 107:218–24, 1997.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hans Frauenfelder
    • 1
  1. 1.Theory DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations