Conformational Substates

  • Hans Frauenfelder
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


A characteristic property of a complex system is inhomogeneity; it can assume many different conformations, or as we call them “conformational substates .” Glasses are typical examples. Proteins clearly are complex and it is ludicrous to assume that they exist in a unique structure, each atom exactly in a unique position. Here we discuss states and substates and present some of the evidence for conformational substates . Detailed discussion of more experimental and theoretical support for the concept can be found in reviews [1, 2].


Barrier Height Energy Landscape Hole Burning Heme Pocket Spectral Hole Burning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Frauenfelder, G. U. Nienhaus, and R. D. Young. Relaxation and disorder in proteins. In Disorder Effects in Relaxation Processes. Springer, Heidelberg, 1994. pp. 591–614.Google Scholar
  2. 2.
    G. U. Nienhaus and R. D. Young. Protein dynamics. In Encyclopedia of Applied Physics. Vol. 15: Power Electronics to Raman Scattering. VCH Publishers, New York, 1996. pp. 163–84.Google Scholar
  3. 3.
    R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsaluls. Dynamics of ligand binding to myoglobin. Biochemistry, 14:5355–73, 1975.CrossRefGoogle Scholar
  4. 4.
    H. Frauenfelder. The Debye-Waller factor: From villain to hero in protein crystallography. Int. J. Quantum Chemistry, 35:711–5, 1989.CrossRefGoogle Scholar
  5. 5.
    B. T. M. Willis and A. W. Pryor. Thermal Vibration in Crystallography. Cambridge Univ. Press, London, 1975.Google Scholar
  6. 6.
    G. A. Petsko and D. Ringe. Fluctuations in protein structure from X-ray diffraction. Ann. Rev. Biophys. Bioeng., 13:331–71, 1984.CrossRefGoogle Scholar
  7. 7.
    H. Frauenfelder, G. A. Petsko, and D. Tsernoglou. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature, 280:558–63, 1959.ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Garcia, J. A. Krumhansl, and H. Frauenfelder. Variations on a theme by Debye and Waller: From simple crystals to proteins. Proteins, 29:343–347, 1997.CrossRefGoogle Scholar
  9. 9.
    P. A. Rejto and S. T. Freer. Protein conformational substates from X-ray crystallography. Prog. Biophys. Mol. Bio., 66:167–96, 1996.CrossRefGoogle Scholar
  10. 10.
    T. D. Romo, J. B. Clarage, D. C. Sorensen, and G. N. Phillips, Jr. Automated identification of discrete substates in proteins: Singular value decomposition analysis of time–average crystallographic refinements. Proteins, 22:311–21, 1995.CrossRefGoogle Scholar
  11. 11.
    M. A. DePristo, P. I. W. de Bakker, and T. L. Blundell. Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure, 280:831–8, 2004.CrossRefGoogle Scholar
  12. 12.
    A. Cooper. Photoselection of conformational substates and the hyposochromic photoproduct of rhodopsin. Chem. Phys. Lett., 99:305–9, 1983.ADSCrossRefGoogle Scholar
  13. 13.
    K. T. Schomacker and P. M. Champion. Investigations of spectral broadening mechanisms in biomolecules: Cytochrome-c. J. Chem. Phys., 84:5314–25, 1986.ADSCrossRefGoogle Scholar
  14. 14.
    V. Srajer, K. T. Schomacker, and P. M. Champion. Spectral broadening in biomolecules. Phys. Rev. Lett., 57:1267–70, 1986.ADSCrossRefGoogle Scholar
  15. 15.
    J. R. Alcala, E. Gratton, and F. G. Prendergast. Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys. J., 51:925–36, 1987.CrossRefGoogle Scholar
  16. 16.
    N. Bloembergen, E. M. Purcell, and R. V. Pound. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev., 73:679–712, 1948.ADSCrossRefGoogle Scholar
  17. 17.
    J. Friedrich and D. Haarer. Photochemical hole burning: A spectroscopic study of relaxation processes in polymers and glasses. Angew. Chem. Int. Ed., 23:113–40, 1984.CrossRefGoogle Scholar
  18. 18.
    R. Jankowiak and G. J. Small. Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures. Science, 237(4815):618–25, 1987.ADSCrossRefGoogle Scholar
  19. 19.
    S. G. Boxer, D. J. Lockhart, and T. R. Middendorf. Photochemical hole-burning in photosynthetic reaction centers. Chem. Phys. Lett., 123:476, 1986.ADSCrossRefGoogle Scholar
  20. 20.
    S. R. Meech, A. J. Hoff, and D. A. Wiersma. Evidence for a very early intermediate in bacterial photosynthesis: A photon-echo and hole-burning study of the primary donor band in Rhodopseudomonas sphaeroides. Chem. Phys. Lett., 121:287–92, 1985.ADSCrossRefGoogle Scholar
  21. 21.
    W. Köhler, J. Friedrich, R. Fischer, and H. Scheer. High resolution frequency selective photochemistry of phycobilisomes at cryogenic temperatures. J. Chem. Phys., 89:871–4, 1988.ADSCrossRefGoogle Scholar
  22. 22.
    S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf. Nonphotochemical holeburning in a protein matrix: Chlorophyllide in apomyoglobin. J. Chem. Phys., 86:2439–41, 1987.ADSCrossRefGoogle Scholar
  23. 23.
    J. Gafert, H. Pschierer, and J. Friedrich. Proteins and glasses: A relaxation study in the millikelvin range. Phys. Rev. Lett., 74:3704–7, 1995.ADSCrossRefGoogle Scholar
  24. 24.
    R. Elber and M. Karplus. Multiple conformation states of proteins: A molecular dynamics analysis of myoglobin. Science, 235:318–21, 1987.ADSCrossRefGoogle Scholar
  25. 25.
    N. Go and T. Noguti. Structural basis of hierachical multiple substates of a protein. Chemica Scripta, 29A:151–64, 1989.Google Scholar
  26. 26.
    A. E. Garcia, R. Blumenfeld, J. A. Hummer, and J. A. Krumhansl. Multi–basin dynamics of a protein in a crystal environment. Physica D, 107:225–39, 1997.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hans Frauenfelder
    • 1
  1. 1.Theory DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations