Advertisement

Superlattice and Quantum Well

  • Junhao Chu
  • Arden Sher
Chapter
Part of the Microdevices book series (MDPF)

Abstract

In three-dimensional crystals, the band edge carrier motion can be described by a quasi-particle model. The interaction of the particle with the periodic crystal field is included in the effective mass, m  ∗ . To first order, the electrons in the conduction band of a crystal with inversion symmetry have m  ∗  independent of crystal direction, and the quasi-particle energy, E 3D, is in an isotropic distribution in k-space,
$${E}^{3\mathrm{D}}(k) = \frac{{\hbar }^{2}} {2{m}^{{_\ast}}}({k}_{x}^{2} + {k}_{ y}^{2} + {k}_{ z}^{2}),$$
(5.1)
where k x , k y , k z denote the wave numbers in the x, y, z directions.

Keywords

Landau Level Quantum Hall Effect Spin Splitting Bloch Function Intraband Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673–676Google Scholar
  2. Altarelli M (1985) Electronic structure of two-dimensional semiconductor systems. J Lumines 30:472–487Google Scholar
  3. Ancilotto F, Fasolino A, Maan JC (1988) Hole-subband mixing in quantum wells: A magnetooptic study. Phys Rev B 38:1788–1799Google Scholar
  4. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505Google Scholar
  5. Ando T (1974a) Theory of quantum transport in a two-dimensional electron system under magnetic fields II: Single-site approximation under strong fields. Jpn J Phys Soc 36:1521–1529Google Scholar
  6. Ando T (1974b) Theory of quantum transport in a two-dimensional electron system under magnetic fields III: Many-site approximation. Jpn J Phys Soc 37:622–630Google Scholar
  7. Ando T (1974c) Theory of quantum transport in a two-dimensional electron system under magnetic fields IV: Oscillatory conductivity. Jpn J Phys Soc 37:1233–1237Google Scholar
  8. Ando T (1983) Electron localization in a two-dimensional system in strong magnetic fields I: Case of short-range scatterers. Jpn J Phys Soc 52:1740–1749Google Scholar
  9. Ando T (1984a) Electron localization in a two-dimensional system in strong magnetic fields II: Long-range scatterers and response functions. Jpn J Phys Soc 53:3101–3111Google Scholar
  10. Ando T (1984b) Electron localization in a two-dimensional system in strong magnetic fields III: Impurity-concentration dependence and level-mixing effects. Jpn J Phys Soc 53:3126–3135Google Scholar
  11. Ando T (1992) In: Fukuyama H, Ando T (eds) Transport Phenomena in Mesoscopic systems. Springer, Berlin, p 185Google Scholar
  12. Ando T, Uemura Y (1974) Theory of quantum transport in a two-dimensional electron system under magnetic fields I: Characteristics of level broadening and transport under strong fields. Jpn J Phys Soc 36:959–967Google Scholar
  13. Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437–672Google Scholar
  14. Aoki H, Ando T (1981) Effect of localization on the hall conductivity in the two-dimensional system in strong magnetic fields. Solid State Commun 38:1079–1082Google Scholar
  15. Aoki H, Ando T (1985) Critical localization in two-dimensional Landau quantization. Phys Rev Lett 54:831–834Google Scholar
  16. Aoki H, Ando T (1986) Critical localization and low-temperature transport in two-dimensional Landau quantization. Surf Sci 170:249–255Google Scholar
  17. Arakawa Y, Sakaki H (1982) Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett 40:939Google Scholar
  18. Bastard G (1988) Wave Mechanics Applied to Semiconductor Heterostructures. Halsted, New YorkGoogle Scholar
  19. Bastard G, Brum JA, Ferreira R (1991) In: Ehrenreich, Turnbull D (eds) Solid State Physics, Vol. 44. Academic, New York, p 229Google Scholar
  20. Becker CR, Latussek V, Li M, Pfeuffer-Jeschke A, Landwehr G (1999) Valence band offset in HgTe ∕ Hg1 − xCdxTe superlattices. J Electron Mater 28:826–829Google Scholar
  21. Becker CR, Latussek V, Pfeuffer-Jeschke A, Landwehr G, Molenkamp LW (2000) Band structure and its temperature dependence for type-III HgTe ∕ Hg1 − xCdxTe superlattices and their semimetal constituent. Phys Rev B 62:10353–10363Google Scholar
  22. BenDaniel DJ, Duke CB (1966) Space-charge effects on electron tunneling. Phys Rev 152: 683–692Google Scholar
  23. Braun E, Schumacher B, Warnecke P (1997) In: Landwehr G, Ossau W (eds) High magnetic fields in the physics of semiconductors II. World Scientific, Singapore, p 1005Google Scholar
  24. Büttiker M (1986) Four-terminal phase-coherent conductance. Phys Rev Lett 57:1761–1764Google Scholar
  25. Büttiker M (1988a) Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys Rev B 38:9375–9389Google Scholar
  26. Büttiker M (1988b) Symmetry of electrical conduction. IBM J Res Dev 32:317–334Google Scholar
  27. Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C 17:6039–6045Google Scholar
  28. Chakraborty T, Pietiläinen P (1995) The quantum hall effect. In: Cardona M, Fulde P, Klitzing KV, et al. (eds) Springer Series in Solid-State Sciences Vol 85. Springer, BerlinGoogle Scholar
  29. Chalker JT, Coddington PD (1988) Percolation, quantum tunnelling and the integer Hall effect. J Phys C 21:2665–2679Google Scholar
  30. Chang LL, Esaki L, Tsau R (1974) Resonant tunneling in semiconductor double barriers. Appl Phys Lett 24:593Google Scholar
  31. Chen AB, Weisz G, Sher A (1972) Temperature dependence of the electron density of states and dc electrical resistivity of disordered binary alloys. Phys Rev B 5:2897–2924Google Scholar
  32. Chklovskii DB, Shklovskii BI, Glazman LI (1992) Electrostatics of edge channels. Phys Rev B 46:4026–4034Google Scholar
  33. Cho AY, Arthur JR (1975) In: Somerjai G, McCaldin J (eds) Progress in Solid State Chemistry. Vol 10. Pergamon, New York, p 175Google Scholar
  34. Chou ZJ, Gui YS, Su XZ, Dai N, Guo SL, Chu JH (2004) Giant Rashba spin splitting in HgTe/HgCdTe quantum wells. Acta Physica Sinica 53:1186–1190Google Scholar
  35. Chu JH, Sher A (2007) Physics and Properties of Narrow Gap Semi-Conductors. Springer, New YorkGoogle Scholar
  36. Chu L (2001) PhD thesis. Technische Universität MünchenGoogle Scholar
  37. Coleridge PT (1991) Small-angle scattering in two-dimensional electron gases. Phys Rev B 44: 3793–3801Google Scholar
  38. Das B, Miller DC, Datta S, Reifenberger R, Hong WP, Bhattacharya PK, Singh J, Jaffe M (1989) Evidence for spin splitting in InxGa1-xAs/In0.52Al0.48As heterostructures as B → 0. Phys Rev B 39:1411–1414Google Scholar
  39. Datta S, Das B (1990) Electronic analog of the electro-optic modulator. Appl Phys Lett 56:665Google Scholar
  40. Dingle R, Störmer HL, Gossard AC, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl Phys Lett 33:665Google Scholar
  41. Dresselhaus G (1955) Spin-Orbit Coupling Effects in Zinc Blende Structures. Phys Rev 100: 580–586Google Scholar
  42. Drude P (1900a) Zur Elektronentheorie der Metalle I. Teil, Annalen der Physik 1:566–613Google Scholar
  43. Drude P (1900b) Zur Elektronentheorie der Metalle: II. Teil, Annalen der Physik 3:369–402Google Scholar
  44. Englert T, Klitzing KV (1978) Analysis of ρxx minima in surface quantum oscillations on (100) n-type silicon inversion layers. Surf Sci 73:70–80Google Scholar
  45. Esaki L, Sakaki H (1977) New photoconductor. IBM Tech Disc Bull 20:2456–2457Google Scholar
  46. Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61–65Google Scholar
  47. Faurie JP, Million A, Piaguet J (1982) CdTe-HgTe multilayers grown by molecular beam epitaxy. Appl Phys Lett 41:713Google Scholar
  48. Gerhardts RR (1975a) Path-integral approach to the two-dimensional magneto-conductivity problem I: General formulation of the approach. Z Physik B 21:275–283Google Scholar
  49. Gerhardts RR (1975b) Path-integral approach to the two-dimensional magneto-conductivity problem II: Application to n-type (100)-surface inversion layers of p-silicon. Z Physik B 21:285–294Google Scholar
  50. Gerhardts RR (1976) Cumulant approach to the two-dimensional magneto-conductivity problem. Surf Sci 58:227–234Google Scholar
  51. Goschenhofer F, Gerschütz J, Pfeuffer-Jeschke1 A, Hellmig R, Becker CR, Landwehr G (1998) Investigation of iodine as a donor in MBE grown Hg1–xCdxTe. J Electron Mater 27:532–535Google Scholar
  52. Groves SH, Brown RN, Pidgeon CR (1967) Interband Magnetoreflection and Band Structure of HgTe. Phys Rev 161:779–793Google Scholar
  53. Grundler D (2000) Large Rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers. Phys Rev Lett 84:6074–6077Google Scholar
  54. Grundmann M, Stier O, Bimberg D (1995) InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys Rev B 52:11969–11981Google Scholar
  55. Halperin BI (1982) Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys Rev B 25:2185–2190Google Scholar
  56. Harris KA, Hwang S, Blanks DK, Cook JW, Schetzina JF, Otsuka N, Baukus JP, Hunter AT (1986) Characterization study of a HgTe-CdTe superlattice by means of transmission electron microscopy and infrared photoluminescence. Appl Phys Lett 48:396Google Scholar
  57. Haug H, Koch SW (1993) Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, SingaporeGoogle Scholar
  58. Haug RJ, MacDonald AH, Streda P, Klitzing KV (1988) Quantized multichannel magnetotransport through a Barrier in two dimensions. Phys Rev Lett 61:2797–2800Google Scholar
  59. Hetzler SR, Baukus JP, Hunter AT, Faurie JP (1985) Infrared photoluminescence spectra from HgTe-CdTe superlattices. Appl Phys Lett 47:260Google Scholar
  60. Hoffman CA, Meyer JR, Bartolil FJ, Lansari Y, Cook JW, Schetzina JF (1991) Electron mobilities and quantum Hall effect in modulation-doped HgTe-CdTe superlattices. Phys Rev B 44: 8376–8379Google Scholar
  61. Hoffman CA, Meyer JR, Bartoil FJ (1993) Novel magnetotransport and magneto-optical processes in semimetallic HgTe-CdTe superlattices. Semicond Sci Technol 8:S48–S57Google Scholar
  62. Huckestein B, Kramer B (1990) One-parameter scaling in the lowest Landau band: Precise determination of the critical behavior of the localization length. Phys Rev Lett 64:1437–1440Google Scholar
  63. Isihara V, Smrčka L (1986) Density and magnetic field dependences of the conductivity of two-dimensional electron systems. J Phys C: Solid State Phys 19:6777–6789Google Scholar
  64. Janssen M, Hajdu J, Viehweg O (1994) In: Hajdu J (ed) Introduction to theory of the integer quantum hall effect. VCH Verlagsgesellshaft GmbH, WeiheimGoogle Scholar
  65. Jones CE, Casselman TN, Faurie JP, Perkowitz S, Schulman JN (1985) Infrared properties and band gaps of HgTe/CdTe superlattices. Appl Phys Lett 47:140Google Scholar
  66. Kamgar A, Kneschaurek P, Dorda G, Koch JF (1974) Resonance spectroscopy of electronic levels in a surface accumulation layer. Phys Rev Lett 32:1251–1254Google Scholar
  67. Kane EO (1957) Band structure of indium antimonide. J Phys Chem Solids 1:249–261Google Scholar
  68. Kirk WP, Kobiela PS, Schiebel RA, Reed MA (1986) Investigation of the two-dimensional electron gas in HgCdTe by quantum Hall effect measurements. J Vac Sci Technol A 4:2132–2136Google Scholar
  69. Kittel C (1968) Introduction to Solid State Physics, 3rd Ed. Wiley, New York, p 320Google Scholar
  70. Klitzing KV (1990) Ten years quantum hall effect. Adv Solid State Phys 30:25–39Google Scholar
  71. Klitzing KV (1993) The quantum hall effect - An edge phenomenon? Physica B 184:1–6Google Scholar
  72. Klitzing KV, Ebert G (1983) The quantum hall effect. Physica B + C 117–118 Part 2:682–687Google Scholar
  73. Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494–497Google Scholar
  74. Koch S, Haug RJ, Klitzing KV, Ploog K (1991) Size-dependent analysis of the metal-insulator transition in the integral quantum Hall effect. Phys Rev Lett 67:883–886Google Scholar
  75. Krijin MPCM (1991) Heterojunction band offsets and effective masses in III-V quaternary alloys. Semicond Sci Technol 6:27–31Google Scholar
  76. Kubo R, Miyake SJ, Hashitsume N (1965) In: Seitz F, Turnbell D (eds) Solid State Physics Vol 17. Academic, New York, p 269Google Scholar
  77. Landau L (1930) Diamagnetism in metals. Z Physik 64:629–637Google Scholar
  78. Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223–238Google Scholar
  79. Landauer R (1988) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 32:306–316Google Scholar
  80. Landwehr G, Gerschütz J, Oehling S, Pfeuffer-Jeschke A, Latussek V, Becker CR (2000) Quantum transport in n-type and p-type modulation-doped mercury telluride quantum wells. Physica E 6:713–717Google Scholar
  81. Laughlin RB (1981) Quantized hall conductivity in two dimensions. Phys Rev B 23:5632–5633Google Scholar
  82. Lier K, Gerhardts RR (1994) Self-consistent calculations of edge channels in laterally confined two-dimensional electron systems. Phys Rev B 50:7757–7767Google Scholar
  83. Liu H, Buchanan M, Wasilewski Z (1998) How good is the polarization selection rule for intersubband transitions? Appl Phys Lett 72:1682Google Scholar
  84. Luttinger JM (1956) Quantum theory of cyclotron resonance in semi-conductors: General theory. Phys Rev 102:1030–1041Google Scholar
  85. Luttinger JM, Kohn W (1955) Motion of electrons and holes in perturbed periodic fields. Phys Rev 97:869–883Google Scholar
  86. Meaden GT (1965) Electrical Resistance of Metals. Plenum, New YorkGoogle Scholar
  87. Mii YJ, Wang KL, Karunasiri RPG, Yuh PF (1990) Observation of large oscillator strengths for both 1 → 2 and 1 → 3 intersubband transitions of step quantum wells. Appl Phys Lett 56:1046Google Scholar
  88. Mott NF (1966) The electrical properties of liquid mercury. Philos Mag 13:989–1014Google Scholar
  89. Müller G, Weiss D, Koch S, Klitzing KV, Nickel H, Schlapp W, Lösch R (1990) Edge channels and the role of contacts in the quantum Hall regime. Phys Rev B 42:7633Google Scholar
  90. Müller G, Weiss D, Khaetskii AV, Klitzing KV, Koch S, Nickel H, Schlapp W, Lösch R (1992) Equilibration length of electrons in spin-polarized edge channels. Phys Rev B 45:3932–3935Google Scholar
  91. Ohta K (1971a) Broadening of Landau levels in two-dimensional electron gas: Its effect on surface capacitance. Jpn J Appl Phys 10:850–863Google Scholar
  92. Ohta K (1971b) Broadening of Landau levels in two-dimensional electron gas II: Transverse magnetoconductance. Jpn J Phys Soc 31:1627–1638Google Scholar
  93. Omar MA (1975) Elementary Solid State Physics: Principles and Applications. Addison-Wesley, Michigan, p 238Google Scholar
  94. Ono Y (1982) Localization of electrons under strong magnetic fields in a two-dimensional system. Jpn J Phys Soc 51:237–243Google Scholar
  95. Pan JL, West L C, Walker S J, Malik RJ, Walker JF (1990) Inducing normally forbidden transitions within the conduction band of GaAs quantum wells. Appl Phys Lett 57:366Google Scholar
  96. Pfeuffer-Jeschke A, Goschenhofer F, Cheng SJ, Latussek V, Gerschutz J, Becker CR, Gerhardts RR, Landwehr G (1998) Cyclotron masses of asymmetrically doped HgTe quantum wells. Physica B-Condensed Matter 256–258:486–489Google Scholar
  97. Pidgeon CR, Brown RN (1966) Interband magneto-absorption and faraday rotation in InSb. Phys Rev 146:575–583Google Scholar
  98. Pincherle L (1971) Electron energy bands in solids. MacDonald, p 98Google Scholar
  99. Prange RE (1981) Quantized hall resistance and the measurement of the fine-structure constant. Phys Rev B 23:4802–4805Google Scholar
  100. Prange RE, Girvin SM (1990) The Quantum Hall Effect. Springer, New YorkGoogle Scholar
  101. Rashba EI (1960) FiZ Tverd Tela (Leningrad) 2:1224; Sov Phys Solid State 2:1109Google Scholar
  102. Sarma SD (2001) Spintronics. American Scientist 89:516Google Scholar
  103. Satpathy S, Martin RM, Van de Walle CG (1988) Electronic properties of the (100) (Si)/(Ge) strained-layer superlattices. Phys Rev B 38:13237–13245Google Scholar
  104. Schultz M, Merkt U, Sonntag A, Rössler U, Winkler R, Colin T, Helgesen P, Skauli T, Løvold S (1998) Crossing of conduction- and valence-subband Landau levels in an inverted HgTe/CdTe quantum well. Phys Rev B 57:14772–14775Google Scholar
  105. Shao J, Dörnen A, Winterhoff R, Scholz F (2002) Ordering parameter and band-offset determination for ordered GaxIn1 − xP ∕ (Al0. 66Ga0. 34)yIn1 − yP quantum wells. Phys Rev B 66:035109Google Scholar
  106. Shubnikov L, DeHaas WJ (1930) Leiden Commun 207cGoogle Scholar
  107. Sizmann R (1986) Diploma Arbeiter. T U München, MünchenGoogle Scholar
  108. Sporken R, Sivananthan S, Faurie JP, Ehlers DH, Fraxedas J, Ley L, Pireaux JJ, Caudano R (1989) Temperature-dependent photoemission study of the HgTe–CdTe valence-band discontinuity. J Vac Sci Technol A 7:427–430Google Scholar
  109. Störmer HL (1999) Nobel Lecture: The fractional quantum Hall effect. Rev Mod Phys 71:875–889Google Scholar
  110. Störmer HL, Schlesinger Z, Chang A, Tsui DC, Gossard AC, Wiegmann W (1983) Energy structure and quantized hall effect of two-dimensional holes. Phys Rev Lett 51:126–129Google Scholar
  111. Teran FJ, Potemski M, Maude DK, Andrearczyk T, Jaroszynski J, Karczewski G (2002) Pauli paramagnetism and Landau level crossing in a modulation doped CdMnTe/CdMgTe quantum well. Phys Rev Lett 88:186803Google Scholar
  112. Touloukian J (1967) Thermophysical properties research literature retrieval guide Vols II and III. Purdue University Press, La FayetteGoogle Scholar
  113. Truchseβ von M, Latussek V, Goschenhofer F, Becker CR, Landwehr G, Batke E, Sizmann R, Helgesen P (1995) Magneto-optics and valence-band discontinuity in a HgTe-Hg1-xCdxTe superlattice. Phys Rev B 51:17618–17623Google Scholar
  114. Tsui DC, Störmer HL, Gossard AC (1982) Two-dimensional magnetotransport in the extreme quantum limit. Phys Rev Lett 48:1559–1562Google Scholar
  115. Van de Walle CG (1989) Band lineups and deformation potentials in the model-solid theory. Phys Rev B 39:1871–1883Google Scholar
  116. Van de Walle CG, Martin RM (1986) Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys Rev B 34:5621–5634Google Scholar
  117. Van de Walle CG, Martin RM (1987) Theoretical study of band offsets at semiconductor interfaces. Phys Rev B 35:8154–8165Google Scholar
  118. Wang TY, Stringfellow GB (1990) Strain effects on GaxIn1–xAs/InP single quantum wells grown by organometallic vapor-phase epitaxy with 0 ≤ x ≤ 1. J Appl Phys 67:344–352Google Scholar
  119. Wees BJV, Willems EMM, Harmans CJPM, Beenakker CWJ, Houten HV, Williamson JG, Foxon CT, Harris JJ (1989) Anomalous integer quantum Hall effect in the ballistic regime with quantum point contacts. Phys Rev Lett 62:1181–1184Google Scholar
  120. Weiler MH, Aggarwal RL, Lax B (1978) Warping- and inversion-asymmetry-induced cyclotron-harmonic transitions in InSb. Phys Rev B 17:3269–3283Google Scholar
  121. Weisbuch C, Vinter B (1991) Quantum Semiconductor Structures. Academic, San Diego, CAGoogle Scholar
  122. Weiss D, Klitzing KV (1987) In: Landwehr G (ed) Springer Series in Solid-State Sciences Vol 71. Springer, Berlin, p 57Google Scholar
  123. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnár SV, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: A spin-based electronics vision for the future. Science 294:1488–1495Google Scholar
  124. Yang RQ, Xu JM, Sweeny M (1994) Selection rules of intersubband transitions in conduction-band quantum wells. Phys Rev B 50:7474–7482Google Scholar
  125. Zhang XC (2001) Dissertation Zu Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians. Universität Würzburg, WürzburgGoogle Scholar
  126. Zhang XC, Peuffer-Jeschke A, Ortner K, Hock V, Buhmann H, Becker CR, Landwehr G (2001) Phys Rev B 63:245305Google Scholar
  127. Zunger A (1998) Electronic-structure theory of semiconductor quantum dots. MRS Bulletin 23:35Google Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Shanghai Institute of Technical Physics, CASShanghaiChina
  2. 2.East China Normal UniversityShanghaiChina
  3. 3.SRI InternationalMenlo ParkUSA

Personalised recommendations