Two-Dimensional Surface Electron Gas

  • Junhao Chu
  • Arden Sher
Part of the Microdevices book series (MDPF)


The simplest metal-insulator-semiconductor device structure, shown in Fig. 4.1, includes a metal gate, an insulator layer on a semiconductor surface, and a back metal ohmic contact. t ox is the thickness of insulator and εox is its dielectric constant. The insulator layer lies between the metal gate and the top semiconductor surface. A bias voltage is applied to the metal gate to control the surface potential of the semiconductor surface. When the bias voltage reaches a threshold, the n-type semiconductor becomes strongly inverted. The resulting energy band bending is shown in Fig. 4.2. The potential Φ as a function of displacement x from semiconductor surface is obtained from the one-dimensional Poisson equation. Under nondegenerate and thermal equilibrium conditions, we have:
$$\frac{{\mathrm{d}}^{2}\phi } {\mathrm{d}{x}^{2}} = - \frac{q} {\epsilon {\epsilon }_{0}}\left [{n}_{\mathrm{n}0}({e}^{q\phi /{k}_{\mathrm{B}}T} - 1) - {p}_{\mathrm{ n}0}({e}^{-q\phi /{k}_{\mathrm{B}}T} - 1)\right ].$$
The electrical field distribution is
$$E = -\frac{\mathrm{d}\phi } {\mathrm{d}x} = \pm {\left (\frac{2{k}_{\mathrm{B}}T} {\epsilon {\epsilon }_{0}} \right )}^{1/2}F(\phi ),$$
$$F(\phi ) ={ \left [{n}_{\mathrm{n}0}\left ({e}^{q\phi /{k}_{\mathrm{B}}T} - \frac{q\phi } {kT} - 1\right ) + {p}_{\mathrm{n}0}\left ({e}^{-q\phi /{k}_{\mathrm{B}}T} + \frac{q\phi } {kT} - 1\right )\right ]}^{1/2},$$
and n n0 and p n0 are the concentrations of majority and minority carriers in the semiconductor, ε is its permittivity, and q is the magnitude of the electron charge.


Landau Level Inversion Layer Surface Recombination Velocity Capacitance Spectrum Subband Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amelio GF (1972) A new method of measuring interface state densities in mis devices. Surface Sci 29:125–143CrossRefGoogle Scholar
  2. Ando T (1985) Subbands in space-charge layers on narrow gap semiconductors: Validity of semiclassical approximation. J Phys Soc Jpn 54:2676–2681CrossRefGoogle Scholar
  3. Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437–672CrossRefGoogle Scholar
  4. Antoszewski J, Faraone L (1996) Analysis of magnetic field dependent Hall data in narrow bandgap Hg1 − xCdxTe grown by molecular beam epitaxy. J Appl Phys 80:3881–3892CrossRefGoogle Scholar
  5. Antoszewski J, Seymour DJ, Faraone L, Meyer JR, Hoffman CA (1995) Magneto-transport characterization using quantitative mobility-spectrum analysis. J Electron Mater 24:1255–1262CrossRefGoogle Scholar
  6. Bohm D (1954) Quantum Theory. Constable, LondonGoogle Scholar
  7. Brenig W, Kasai H (1984) Band mixing in narrow gap semiconductors. Z Phys B-condensed matter 54:191–194CrossRefGoogle Scholar
  8. Broudy RM (1981) In: Willardson RK, Beer AC (eds), Semiconductors and Semimetals, Vol 18. Academic, New York, p 157Google Scholar
  9. Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C 17:6039–6045CrossRefGoogle Scholar
  10. Chang LL, Mendez EE, Kawai NJ, Esaki L (1982) Shubnikov-De Haas oscillations under tilted magnetic fields in InAs-GaSb superlattices. Surf Sci 113:306–312CrossRefGoogle Scholar
  11. Chapman RA, Kinch MA, Simmons A, Borrello SR, Morris HB, Wrobel JS, Buss DD (1978) Hg0. 7Cd0. 3Te charge-coupled device shift registers. Appl Phys Lett 32:434–436CrossRefGoogle Scholar
  12. Chen YJ (1993) Quantum Hall Effect. Science Press, BeijingGoogle Scholar
  13. Chu JH, Xu SQ, Ji HM (1985a) Determination of composition of Hg1−xCdxTe with the method of infrared absorption. Infrared Research 4:255Google Scholar
  14. Chu JH (1985b) Effective mass of electrons in conduction band of Hg1−xCdxTe semiconductors. Infrared Research 4:439Google Scholar
  15. Chu JH, Mi ZY (1987) Optical propertiers of narrow gap semiconductors. Prog Phys 7:311Google Scholar
  16. Chu JH, Mi ZY (1991) Surface electron subband structures of Hg1−xCdxTe. J Infrared Milli Waves 10:427–442Google Scholar
  17. Chu JH, Xu SQ, Tang DY (1982) The energy band gap of ternary semiconductors Hg1−xCdxTe. Chinese Sci Bull 27:403–406Google Scholar
  18. Chu JH, Xu SQ, Tang DY (1983) Energy gap versus alloy composition and temperature in Hg1 − xCdxTe. Appl Phys Lett 43:1064CrossRefGoogle Scholar
  19. Chu JH, Sizmann R, Wollrab R, Koch F, Ziegler J, Maier H (1989) Study of resonant defect states in HgCdTe by capacitance spectroscopy. Infrared Research 8:327–334Google Scholar
  20. Chu JH, Sizmann R, Koch F (1990a) Subband dispersion relations and Landau levels of the inversion layer in p-HgCdTe. Sci China A 33:515–521Google Scholar
  21. Chu JH, Sizmann R, Koch F, Ziegler J, Maier H (1990b) Experimental study of inversion layer subband structure on HgCdTe. Chinese J Semicond 11:332–340Google Scholar
  22. Chu JH, Shen SC, Sizmann R, Koch F (1991a) Magneto-optical resonance of subband electron for HgCdTe. J Infrared Milli Waves 10:44–50Google Scholar
  23. Chu JH, Mi ZY, Sizmann R, Koch F (1991b) Subband structure in the electric quantum limit for Hg1 − xCdxTe. Phys Rev B 44:1717–1723CrossRefGoogle Scholar
  24. Chu JH, Mi ZY, Sizmann R, Koch F, Wollrab R, Ziegler J, Maier H (1992) Influence of resonant defect states on subband structures in Hg1 − xCdxTe. J Vac Sci Tech B 10:1569–1573CrossRefGoogle Scholar
  25. Dornhaus R, Nimtz G (1983) The properties and applications of the MCT alloy system in narrow-gap semiconductors. In: Springer Tracts in Modern Phys, Vol 98. Springer, Heidelberg, p 130Google Scholar
  26. Dziuba Z, Górska M (1992) Analysis of the electrical conduction using an iterative method. J Phys III France 2:99–110CrossRefGoogle Scholar
  27. Eisberg R, Resnick R (1985) Sommerfeld’s Model. In: Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd editon. Wiley, New York, pp 114–117Google Scholar
  28. Fang FF, Howard WE (1966) Negative field-effect mobility on (100) Si surfaces. Phys Rev Lett 16:797–799CrossRefGoogle Scholar
  29. Gui YS, Zheng GZ, Chu JH, Guo SL, Tang DY, Cai Y (1997) Magneto-transport properties for accumulated layer on surface of Hg1 − xCdxTe detector. Chinese J Semicond 18:667–673Google Scholar
  30. Gui YS, Chu JH, Cai Y, Zheng GZ, Tang DY (1998) Study on the electron mobility for each subband on the n-HgCdTe accumulated layer. Acta Phys Sin 47:1354–1360Google Scholar
  31. Huang H, Zheng GZ, Tong FM, Tang DY (1993) The effect of surface layer oxide on Hg1 − xCdxTe Hall data. J Infrared Milli Waves 12:309–314Google Scholar
  32. Justice RJ, Seiler DG, Zawadzki W, Koestner RJ, Goodwin MW, Kinch MA (1988) Characterization of molecular-beam epitaxially grown HgTe films by Shubnikov–de Haas measurements. J Vac Sci Technol A 6:2779–2784CrossRefGoogle Scholar
  33. Kim JS, Seiler DG, Tseng WF (1993) Multicarrier characterization method for extracting mobilities and carrier densities of semiconductors from variable magnetic field measurements. J Appl Phys 73:8324–8335CrossRefGoogle Scholar
  34. Kim JS, Seiler DG, Colombo L, Chen MC (1995) Characterization of liquid-phase epitaxially grown HgCdTe films by magnetoresistance measurements. J Electron Mater 24:1305–1310CrossRefGoogle Scholar
  35. Kinch MA (1981) In: Willardson RK, Beer AC (eds) Semiconductors and Semimetals, Vol. 18. Academic press, New York, pp 313–384Google Scholar
  36. Koch F (1975) In: Zawadzki W (ed) Narrow Gap Semiconductors. Springer-Verlag, BerlinGoogle Scholar
  37. Koch F (1982) In: Gornik E, Heinrich H, Palmetshafer L (eds) Physics of Narrow Gap Semiconductors, Vol. 152, Lecture Notes in Physics. Springer, New York, p 92CrossRefGoogle Scholar
  38. Koch F (1984) Two-dimensional systems, heterostructrues, and superlattics. In: Bauer G, Kuchar K, Heinrich H (eds) Solid State Science Series, Vol. 53. Springer, New York, p 20Google Scholar
  39. Kuhn M (1970) A quasi-static technique for MOS C-V and surface state measurements. Solid State Electron 13:873–885CrossRefGoogle Scholar
  40. Lehovec K, Slobodskoy A (1964) Impedance of semiconductor-insulator-metal capacitors. Solid State Electron 7:59–79CrossRefGoogle Scholar
  41. Lowney JR, Seiler DG, Thurber WR, Yu Z, Song XN, Littler CL (1993) Heavily accumulated surfaces of mercury cadmium telluride detectors: Theory and experiment. J Electron Mater 22:985–991CrossRefGoogle Scholar
  42. Macdonald JR (1964) Distribution of space charge in homogeneous metal oxide films and semiconductors. J Chem Phys 40:3735–3737CrossRefGoogle Scholar
  43. Malcher F, Nachev I, Ziegler A, Rössler U (1987) Subband states in n-inversion layers on small-gap semiconductors. Z Phys B-condensed matter 68:437–444CrossRefGoogle Scholar
  44. Marques GE, Sham LJ (1982) Theory of space-charge layers in narrow-gap semiconductors. Surf Sci 113:131–136CrossRefGoogle Scholar
  45. Merkt U, Oelting S (1987) Simple description of nonparabolic two-dimensional subbands. Phys Rev B 35:2460–2462CrossRefGoogle Scholar
  46. Messiah A (1959) Mecanique quantique I. Dunod, ParisGoogle Scholar
  47. Meyer JR, Hoffman CA, Bartoli FJ, Arnold DA, Sivananthan S, Fauri JP (1993) Methods for magneto transport characterization of IR detector materials. Semicond Sci Technol 8:805–823CrossRefGoogle Scholar
  48. Meyer JR, et al. (1995) Advanced Magneto-Transport Characterization of LPE-Grown Hg1 − xCdxTe by QMSA. MCT WorkshopGoogle Scholar
  49. Nachev I (1988) Bound states in inversion layers on p-Hg1 − xCdxTe: self-consistent results. Semicond Sci Technol 3:29–34CrossRefGoogle Scholar
  50. Nemirovsky Y (1990) Passivation with II–VI compounds. J Vac Sci Technol A 8:1185–1187CrossRefGoogle Scholar
  51. Nemirovsky Y, Bahir G (1989) Passivation of mercury cadmium telluride surfaces. J Vac Sci Technol A 7:450–459CrossRefGoogle Scholar
  52. Nemirovsky Y, Kirdron I (1979) The interface between Hg1 − xCdxTe and its native oxide. Solid State Electron 22:831–837CrossRefGoogle Scholar
  53. Nicholas RJ, Nasir F, Singleton J (1990) High magnetic field characterisation of (Hg,Cd)Te surface layers. J Cryst Growth 86:656–666CrossRefGoogle Scholar
  54. Nicollian EH, Goetzberger A (1967) The silicon-silica interface–electrical properties as determined by the metal-insulator-silicon conductance technique. Bell System Technical Journal 46:1055–1133Google Scholar
  55. Nimtz G, Schlicht B, Dornhaus R (1979) Long-term Hall-type conversion by vacancy diffusion in Hg1 − xCdxTe at room temperature. Appl Phys Lett 34:490–491CrossRefGoogle Scholar
  56. Ohkawa FJ, Uemura Y (1974) Quantized surface states of a narrow-gap semiconductor. J Phys Soc Jpn 37:1325–1333CrossRefGoogle Scholar
  57. Reine MB, Maschhoff KR, Tobin SP, Norton PW, Mroczkowski JA, Krueger EE (1993) The impact of characterization techniques on HgCdTe infrared detector technology. Semicond Sci Technol 8:788–804CrossRefGoogle Scholar
  58. Rosbeck JP, Starr RE, Price SL, Riley KJ (1982) Background and temperature dependent current-voltage characteristics of HgCdTe photodiodes. J Appl Phys 53:6430–6440CrossRefGoogle Scholar
  59. Rössler U, Malcher F, Lommer G (1989) In: Landwehr G (ed) High Magnetic Fields in Semiconductor Physics II. Springer, Berlin, p 157Google Scholar
  60. Parat KK, Taskar NR, Bhat IB, Ghandhi SK (1990) Annealing and electrical properties of Hg1 − xCdxTe grown by OMVPE. J Crystal Growth 106:513–523CrossRefGoogle Scholar
  61. Scott W, Stelzer EL, Hager RJ (1976) Electrical and far-infrared optical properties of p-type Hg1 − xCdxTe. J Appl Phys 47:1408–1414CrossRefGoogle Scholar
  62. Singh R, Gupta AK, Chhabra KC (1991) Surface passivation of mercury-cadmium-telluride infrared detectors. Def Sci J (India) 41:205–239Google Scholar
  63. Singleton J, Nasir F, Nicholas RJ (1986a) High-magnetic field characterization of (Hg,Cd)Te detectors. Proc SPIE 659:99–108CrossRefGoogle Scholar
  64. Singleton J, Nicholas RJ, Nasir F, Sarkar CK (1986b) Quantum transport in accumulation layers on Cd0. 2Hg0. 8Te. J Phys C: Solid State Phys 19:35–42CrossRefGoogle Scholar
  65. Sizmann R, Chu JH, Wollrab R, Koch F, Ziegler J, Maier H (1988) In: Zawadzki W (ed) Proceeding of 19th International Conference on Physics of Semiconductors. Institute of physics, Warsaw, p 471Google Scholar
  66. Sizmann R, Chu JH, Koch F, Ziegler J, Maier H (1990) Sub-band and resonant level spectroscopy from capacitance measurements. Semicond Sci Technol 5:S111–S114CrossRefGoogle Scholar
  67. Stern F (1972) Self-consistent results for n-type Si inversion layers. Phys Rev B 5:4891–4899CrossRefGoogle Scholar
  68. Takada Y, Uemura Y (1977) Subband structures of N-channel inversion layers on III–V compounds – possibility of the gate controlled Gunn effect. J Phys Soc Jpn 43:139–150CrossRefGoogle Scholar
  69. Takada Y, Arai K, Uchimura N, Uemura Y (1980) Theory of electronic properties in N-channel inversion layers on narrow-gap semiconductors I. Subband structure of InSb. J Phys Soc Jpn 49:1851–1858CrossRefGoogle Scholar
  70. Takada Y, Arai K, Uemura Y (1982) In: Gornik E (ed) Physics of Narrow Gap Semiconductors, Lecture Notes in Physics, Vol. 152. Springer, Berlin, p 101CrossRefGoogle Scholar
  71. Tsau GH, Sher A, Madou M, Wilson JA, Cotton VA, Jones CE (1986) Low-frequency admittance measurements on the HgCdTe/Photox SiO2 interface. J Appl Phys 59:1238–1244CrossRefGoogle Scholar
  72. van Schilfgaarde M, Kotami T, Faleev SV (2006) Adequacy of approximations in GW theory. Phys Rev B 74:245125CrossRefGoogle Scholar
  73. White AM (1981) The influence of surface properties on minority carrier lifetime and sheet conductance in semiconductors. J Phys D: Appl Phys 14:L1–L3CrossRefGoogle Scholar
  74. Xiong XM (1987) PhD thesis, Shanghai Institute of Technical PhysicsGoogle Scholar
  75. Yadava RDS, Sundersheshu BS, Anandan M, Bagai RK, Borle WN (1994) Precipitation in CdTe crystals studied through mie scattering. J Electron Mater 23:1349–1357CrossRefGoogle Scholar
  76. Zawadzki W (1983) Theory of optical transitions in inversion layers of narrow-gap semiconductors. J Phys C: Solid State Phys 16:229–240CrossRefGoogle Scholar
  77. Ziegler A, Rössler U (1988) Zener-tunnelling of inversion layer electrons on small gap semiconductors. Solid State Commun 65:805–808CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Shanghai Institute of Technical Physics, CASShanghaiChina
  2. 2.East China Normal UniversityShanghaiChina
  3. 3.SRI InternationalMenlo ParkUSA

Personalised recommendations