Part of the Microdevices book series (MDPF)


At room temperature, semiconductors can be in a stable equilibrium, but most doped semiconductors or alloys are in metastable states with compositions that are frozen at a temperature where diffusion stops. Under these conditions, the carrier densities of semiconductors are in quasi-equilibrium and remain constant. However, external effects can destroy the balance between thermal excitation and recombination to excite extra carriers. Often the extra carriers that play an important roll in devices are the minority carriers, holes in n-type and electrons in p-type material. If the source of the external effects disappears, the nonequilibrium carrier population will also decrease because the probability of carrier recombination is larger than that of carrier generation. Normally, we call the time duration of the return to equilibrium, the minority carrier life time. As is well known, the carrier life time is very different for different semiconductor materials. For example, it can exceed \(1{0}^{-2}\mbox{ \textendash }1{0}^{-3}\,\mu \mathrm{s}\) for single crystal Ge, and the values can be in the range of 10 μs for high-purity Si. However, the carrier life time is quite long, about \(1{0}^{-2}\mbox{ \textendash }1{0}^{-3}\,\mu \mathrm{s}\) or longer for GaAs semiconductor materials. The value is about 1 μs for HgCdTe materials. Note that the life time can change over a wide range for different alloy concentrations of the same semiconductor material.


Radiative Recombination Minority Carrier Carrier Lifetime Recombination Center Auger Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adomaitis E, Grigoras K, Krotkus A (1990) Minority carrier recombination in p-type CdxHg1-xTe. Semicond Sci Technol 5:836–841CrossRefGoogle Scholar
  2. Afromowitz MA, Didomenico M (1971) Measurement of free-carrier lifetimes in GaP by photoinduced modulation of infrared absorption. J Appl Phys 42:3205–3208CrossRefGoogle Scholar
  3. Baars J, Sorger F (1972) Reststrahlen spectra of HgTe and CdxHg1 − xTe. Solid State Commun 10:875–878CrossRefGoogle Scholar
  4. Baicker JA, Fang PH (1972) Transient conductivity of silicon. J Appl Phys 43:125–131CrossRefGoogle Scholar
  5. Bajaj J, Babulac LO, Newman PR, Tennant WE (1987) Spatial mapping of electrically active defects in HgCdTe using laser beam-induced current. J Vac Sci Technol A 5:3186–3189CrossRefGoogle Scholar
  6. Baker IM, Capocci FA, Charlton DE, Wotherspoon JTM (1978) Recombination in cadmium mercury telluride photodetectors. Solid State Electron 21:1475–1480CrossRefGoogle Scholar
  7. Bardeen J, Blatt FJ, Hall LH (1956) In: Breckenridge RC (ed) Photoconductivity Conference, Atlantic City 1954. Wiley, New YorkGoogle Scholar
  8. Bartoli F, Allen R, Esterowitz L, Kruer M (1974) Auger-limited carrier lifetimes in HgCdTe at high excess carrier concentrations. J Appl Phys 45:2150–2154CrossRefGoogle Scholar
  9. Beattie AR (1962) Quantum efficiency in InSb. J Phys Chem Solids 23:1049–1056CrossRefGoogle Scholar
  10. Beattie AR, Landsberg PT (1959) Auger effect in semiconductors. Proc R Soc London Ser A 249:16–29CrossRefGoogle Scholar
  11. Beattie AR, Smith G (1967) Recombination in semiconductors by a light hole Auger transition. Phys Status Solidi 19:577–586CrossRefGoogle Scholar
  12. Blakemore JS (1962) Semiconductor Statistics. Pergamon, OxfordGoogle Scholar
  13. Casselman TN (1981) Calculation of the Auger lifetime in p-type Hg1-xCdxTe. J Appl Phys 52:848–854CrossRefGoogle Scholar
  14. Casselman TN, Petersen PE (1980) A comparison of the dominant Auger transitions in ptype (Hg,Cd)Te. Solid State Commun 33:615–619CrossRefGoogle Scholar
  15. Chen JS, Bajaj J, Tennant WE, Lo DS, Brown M (1987) On the Auger recombination process in p-type LPE HgCdTe. IN: Materials for infrared detectors and sources; Proceedings of the Symposium, Boston, MA, 1986. Materials Research Society, Pittsburgh, PA, pp 287–293Google Scholar
  16. Chen MC, Colombo L (1992) Minority-carrier lifetime in indium-doped n-type Hg0. 78Cd0. 22Te liquid-phase-epitaxial films. J Appl Phys 72:4761–4766CrossRefGoogle Scholar
  17. Chen MC, Colombo L, Dodge JA, Tregilgas JH (1995) The minority carrier lifetime in doped and undoped p-type Hg0. 78Cd0. 22Te liquid phase epitaxy films. J Electronic Materials 24:539–544CrossRefGoogle Scholar
  18. Choo SC (1970) Carrier lifetimes in semiconductors with two interacting or two Independent recombination levels. Phys Rev B 1:687–696CrossRefGoogle Scholar
  19. Chu JH, Sher A (2007) Physics and Properties of Narrow Gap Semi-Conductors. Springer, New YorkGoogle Scholar
  20. Chu JH, Xu SQ, Tang DY (1982) Chinese Sci. Bull 27:403Google Scholar
  21. Chu JH, Xu SQ, Tang DY (1983) Energy gap versus alloy composition and temperature in Hg1-xCdxTe. Appl Phys Lett 43:1064–1066CrossRefGoogle Scholar
  22. Chu JH, Li B, Liu K, Tang DY (1994) Empirical rule of intrinsic absorption spectroscopy in Hg1-xCdxTe. J Appl Phys 75:1234–1235CrossRefGoogle Scholar
  23. Elliott CT (1977) Pat. 1488258Google Scholar
  24. Elliott CT (1981) New detector for thermal imaging systems. Electron Lett 17:312–313CrossRefGoogle Scholar
  25. Fang FF, Howard WE (1966) Negative field-effect mobility on (100) Si surfaces. Phys Rev Lett 16:797–799CrossRefGoogle Scholar
  26. Gerhardts RR, Dornhaus R, Nimtz G (1978) The Auger-effect in Hg1-xCdxTe. Solid State Electron 21:1467–1470CrossRefGoogle Scholar
  27. Gong HM (1993) PhD thesis, Shanghai Institute of Technical PhysicsGoogle Scholar
  28. Gräfe W (1971) Extension of the surface recombination model and unique determination of the recombination energy by means of reverse current measurements. Phys Status Solidi A 4: 655–662CrossRefGoogle Scholar
  29. Hall RN (1952) Electron-hole recombination in Germanium. Phys Rev 87:387–387CrossRefGoogle Scholar
  30. Hall RN (1959) Proc Inst Electr Eng B Suppl 106:923Google Scholar
  31. Hovel HJ (1992) Scanned photoluminescence of semiconductors. Semicond Sci Technol 7:A1–A9CrossRefGoogle Scholar
  32. Huang QS, Tang DY (1965) Recombination processes of carriers in Indium antimonide. Acta Phys Sin 21:1038Google Scholar
  33. Jones CL, Capper P, Gosney JJ (1982) Thermal modelling of bridgman crystal growth. J Crystal Growth 56:581–590CrossRefGoogle Scholar
  34. Kinch MA (1981) In: Willardson RK, Beer AC (eds) Semiconductor and Semimetal, Vol. 18. Academic, New York, p 287Google Scholar
  35. Kinch MA, Brau MJ, Simmons A (1973) Recombination mechanisms in 8–14-μ HgCdTe. J Appl Phys 44:1649–1663CrossRefGoogle Scholar
  36. Kopanski JJ, Lowney JR, Novotny DB, Seiler DG, Simmons A, Ramsey J (1992) High-spatial-resolution resistivity mapping applied to mercury cadmium telluride. J Vac Sci Technol B 10:1553–1559CrossRefGoogle Scholar
  37. Krishnamurthy S, Berding MA, Yu ZG (2006) Minority Carrier Lifetimes in HgCdTe Alloys J of Elect Materials 35:1369–1378Google Scholar
  38. Kurnick SW, Powell JM (1959) Optical absorption in pure single crystal InSb at \(29{8}^{\circ }\) and \(7{8}^{\circ }\,\mathrm{K}\). Phys Rev 116:597–604CrossRefGoogle Scholar
  39. Lacklison DE, Capper P (1987) Minority carrier lifetime in doped and undoped ptype CdxHg1-xTe. Semicond Sci Technol 2:33–43CrossRefGoogle Scholar
  40. Ling ZG, Lu PD (1984) Chinese J Semicond 5:144Google Scholar
  41. Long D, Schmit JL (1970) In: Willardson RK, Beer AC (eds) Semiconductor and Semimetal, Vol. 5, Chapter 5. Academic, New YorkGoogle Scholar
  42. Many A, Goldstein Y, Grover NB (1965) Semiconductor Surfaces. Willey, New YorkGoogle Scholar
  43. Mao WY, Chu JH (1993) J Infrared MilliWaves 13:352Google Scholar
  44. Milnes AG (1973) Deep impurities in semiconductors. Wiley, New YorkGoogle Scholar
  45. Mooradian A, Fan HY (1966) Recombination Emission in InSb. Phys Rev 148:873–885CrossRefGoogle Scholar
  46. Moss TS, Burrell GJ, Ellis B (1973) Semiconductors Opto-electronics. Buttorworth, London, p 38Google Scholar
  47. Mroczkowski JA, Shanley JF, Reine MB, LoVechio P, Polla DL (1981) Lifetime measurement in Hg0. 7Cd0. 3Te by population modulation. Appl Phys Lett 38:261–263CrossRefGoogle Scholar
  48. Nemirovsky Y (1990) Passivation of II-IV compounds. J Vac Sci Technol A 8:1185–1187CrossRefGoogle Scholar
  49. Nemirovsky Y, Bahir G (1989) Passivation of mercury cadmium telluride surfaces. J Vac Sci Technol A 7:450–459CrossRefGoogle Scholar
  50. Petersen PE (1970) Auger Recombination in Hg1-xCdxTe. J Appl Phys 41:3465–3467CrossRefGoogle Scholar
  51. Pines MY, Stafsudd OM (1980) Recombination process in intrinsic semiconductors using impact ionization capture cross sections in indium antimonide and mercury cadmium telluride. Infrared Phys 20:73CrossRefGoogle Scholar
  52. Polla DL, Tobin SP, Reine MB, Sood AK (1981a) Experimental determination of minority-carrier lifetime and recombination mechanisms in p-type Hg1-xCdxTe. J Appl Phys 52:5182–5194CrossRefGoogle Scholar
  53. Polla DL, et al. (1981b) Proceeding of the 4th International Conference on the Physics of Narrow Gap Semiconductors. Linz, Austria, p 153Google Scholar
  54. Pratt RG, Hewett J, Capper P, Jones CL, Quelch MJ (1983) Minority carrier lifetime in n-type Bridgman grown Hg1-xCdxTe. J Appl Phys 54:5152–5157CrossRefGoogle Scholar
  55. Roosbroeck W, Shockley W (1954) Photon-Radiative Recombination of Electrons and Holes in Germanium. Phys Rev 94:1558–1560CrossRefGoogle Scholar
  56. Rosbeck JP, Starr RE, Price SL, Riley KJ (1982) Background and temperature dependent current-voltage characteristics of HgCdTe photodiodes. J Appl Phys 53:6430–6440CrossRefGoogle Scholar
  57. Sah CT, Tasch AF Jr (1967) Precise Determination of the Multiphonon and Photon Carrier Generation Properties using the Impurity Photovoltaic Effect in Semiconductors. Phys Rev Lett 19:69–71CrossRefGoogle Scholar
  58. Sandiford DJ (1957) Carrier Lifetime in Semiconductors for Transient Conditions. Phys Rev 105:524–524CrossRefGoogle Scholar
  59. Schacham SE, Finkman E (1985) Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects. J Appl Phys 57:2001–2009CrossRefGoogle Scholar
  60. Schiff L (1955) Quantum Mechanics. McGraw-Hill, New YorkGoogle Scholar
  61. Schmit JL (1970) Intrinsic Carrier Concentration of Hg1-xCdxTe as a Function of x and T Using k ⋅p Calculations. J Appl Phys 41:2876–2879CrossRefGoogle Scholar
  62. Shockley W (1950) Energy band structures in semiconductors. Phys Rev 78:173–174CrossRefGoogle Scholar
  63. Shockley W (1958) Electrons, holes, and traps. Proc IRE 46:973–990CrossRefGoogle Scholar
  64. Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842CrossRefGoogle Scholar
  65. Souza ME de, Boukerche M, Faurie JP (1990). Minority-carrier lifetime in p-type (111)B HgCdTe grown by molecular-beam epitaxy. J Appl Phys, 68:5195–5199CrossRefGoogle Scholar
  66. Srour JR, Curtis OL (1972) Techniques for obtaining recombination-center parameters from carrier lifetime studies. J Appl Phys 43:1779–1784CrossRefGoogle Scholar
  67. Staszewski GM von, Wollrab R (1989) Role of n + -accumulation layers on the carrier lifetime of n-Hg1-xCdxTe. SPIE 1106:110CrossRefGoogle Scholar
  68. Tamm IE (1932) A possible kind of electron binding on crystal surfaces. Physikalische Zeitschrift der Sowjetunion 1:733–746Google Scholar
  69. Tang DY (1974) Infrared Phys Technol 16:345Google Scholar
  70. Tang DY (1976) Infrared Phys Technol 25–26:53Google Scholar
  71. Tung T, Kalisher MH, Stevens AP, Herning PE (1987) Liquid-phase epitaxy of Hg1-xCdxTe from Hg solution – A route to infrared detector structures. Mat Res Soc Symp Proc Vol. 90. Mater Res Soc, Pittsburg, p 321Google Scholar
  72. Wertheim GK (1958) Transient recombination of excess carriers in semiconductors. Phys Rev 109:1086–1091CrossRefGoogle Scholar
  73. White AM (1981) The influence of surface properties on minority carrier lifetime and sheet conductance in semiconductors. J Phys D: Appl Phys 14:L1–L3CrossRefGoogle Scholar
  74. Wijewarnasuriya PS, Lange MD, Sivananthan S, Faurie JP (1995) Minority carrier lifetime in Indium-doped HgCdTe (211)B epitaxial layers grown by molecular beam epitaxy. J Electronic Materials 24:545–549CrossRefGoogle Scholar
  75. Yadava RDS, Gupta AK, Warrior AVR (1994) Hole scattering mechanisms in Hg1-xCdxTe. J Electron Mater 23:1359–1364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Shanghai Institute of Technical Physics, CASShanghaiChina
  2. 2.East China Normal UniversityShanghaiChina
  3. 3.SRI InternationalMenlo ParkUSA

Personalised recommendations