Skip to main content

Prognostication and Prediction in Anatomic Pathology: Carcinoma of the Breast as an Illustrative Model

  • Chapter
  • First Online:
  • 1538 Accesses

Abstract

Despite strong assertions to the contrary, both in the lay press and in medical publications, the current status of new prognostic or predictive medical tests for human malignancies is a chaotic one with dubious cost-effectiveness. A lack of uniformity exists in how those tests are performed and interpreted, and their meaning is often obscured by poorly constructed and administrated clinical trials. In specific reference to breast carcinoma, these have been enumerated earlier in our discussion, including factors such as recognition of “special” histologic variants, accurate measurement of tumor size, BSR grade, mitotic rate, lymph node substage, and the presence of angiolymphatic invasion. As laboratory methods are refined, and as novel, potentially highly effective biological treatments become available and are tailored to specific neoplasms (e.g., imatinib for gastrointestinal stromal tumors and chronic myelogenous leukemia [1, 2], this situation may well change). At the present time, however, pathologists must be systematic and critical in their assessments of new PPMTs, with a strict threshold for acceptance of those methods as “state-of-the-art” procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Waller CF. Imatinib mesylate. Recent Results Cancer Res. 2010;184:3–20.

    Article  PubMed  CAS  Google Scholar 

  2. Arifi S, El-Sayadi H, Dufresne A, et al. Imatinib and solid tumors. Bull Cancer. 2008;95:99–106.

    PubMed  CAS  Google Scholar 

  3. Broders AC. Squamous cell epithelioma of the lip: a study of 537 cases. JAMA. 1920;74:656–64.

    Article  Google Scholar 

  4. Edmundson WF. Microscopic grading of cancer and its practical implications. Arch Dermatol Syphilol. 1948;57:141–50.

    Article  CAS  Google Scholar 

  5. Eker R, Weyde R. The significance of histological grading in the prognosis of carcinomas in the true oral cavity. Acta Pathol Microbiol Scand. 1949;26:750–68.

    Article  PubMed  CAS  Google Scholar 

  6. Ringertz N. Grading of gliomas. Acta Pathol Microbiol Scand. 1950;27:51–64.

    Article  PubMed  CAS  Google Scholar 

  7. Goyanna R, Torres ET, Broders AC. Histological grading of malignant tumors; Broders’ method. Hospital (Rio J). 1951;39:791–818.

    CAS  Google Scholar 

  8. Fahmy A. Histological grading of urinary bladder tumors: a study of 411 urinary bladder biopsies. Urol Int. 1963;15:358–77.

    Article  PubMed  CAS  Google Scholar 

  9. Pugh RC. The grading and staging of bladder tumors: the Institute of Urology classification. Br J Urol. 1957;29:222–5.

    Article  PubMed  CAS  Google Scholar 

  10. Graham JB. Histologic grading of cancer of the uterine cervix. Surg Gynecol Obstet. 1953;96:331–7.

    PubMed  CAS  Google Scholar 

  11. Price CH. The grading of osteogenic sarcoma. Br J Cancer. 1952;6:46–68.

    Article  PubMed  CAS  Google Scholar 

  12. Broders AC, Hargrave R, Meyerding HW. Pathological features of soft tissue fibrosarcoma with special reference to the grading of its malignancy. Surg Gynecol Obstet. 1939;69:267–80.

    Google Scholar 

  13. Denoix PF. Enquate permanent dans les centres anticancereaux. Bull Inst Nat Hyg. 1946;1:70–5.

    Google Scholar 

  14. Dukes CE. The classification of cancer of the rectum. J Pathol Bacteriol. 1932;35:323–40.

    Article  Google Scholar 

  15. Mathews FS. The ten-year survivors of radical mastectomy. Ann Surg. 1933;98:635–43.

    Article  PubMed  CAS  Google Scholar 

  16. Enneking WF, Kagan A. The implications of “skip” metastases in osteosarcoma. Clin Orthop Relat Res. 1975;111:33–41.

    Article  PubMed  Google Scholar 

  17. Kim TH, Nesbit ME, D’Angio GD, Levitt SH. The role of central nervous system irradiation in children with acute lymphoblastic leukemia. Radiology. 1972;104:635–41.

    PubMed  CAS  Google Scholar 

  18. Spiers AS, Booth AE, Firth JL. Subcutaneous cerebrospinal fluid reservoirs in patients with acute leukemia. Scand J Haematol. 1978;20:289–96.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor CR. Immunoperoxidase techniques: practical and theoretical aspects. Arch Pathol Lab Med. 1978;102:113–21.

    PubMed  CAS  Google Scholar 

  20. Mori M, Ambe K, Adachi Y, et al. Prognostic value of immunohistochemically-identified CEA, SC, AFP, and S100 protein positive-cells in gastric carcinoma. Cancer. 1988;62:534–40.

    Article  PubMed  CAS  Google Scholar 

  21. Kluftinger AM, Robinson BW, Quenville NF, Finley RJ, Davis NL. Correlation of epidermal growth ­factor receptor and c-erbB-2 oncogene product to known prognostic indicators of colorectal cancer. Surg Oncol. 1992;1:97–105.

    Article  PubMed  CAS  Google Scholar 

  22. Rescher N. A philosophical introduction to the theory of risk evaluation and measurement. Washington: University Press of America; 1983.

    Google Scholar 

  23. Hubbard D. The failure of risk management: why it’s broken and how to fix it. Baltimore: John Hopkins; 2009.

    Google Scholar 

  24. Risk and uncertainty. http://en.wikipedia.org/wiki/Risk.

  25. Wolf DC, Mann PC. Confounders in interpreting pathology for safety and risk assessment. Toxicol Appl Pharmacol. 2005;202:302–8.

    Article  PubMed  CAS  Google Scholar 

  26. Carter BA, Page DL, O’Malley FP. Usual epithelial hyperplasia and atypical ductal hyperplasia. In: O’Malley FP, Pinder SE, editors. Foundations in diagnostic pathology – breast pathology. Churchill Livingstone: Elsevier; 2006. p. 164–8.

    Google Scholar 

  27. Marchevsky AM, Walts AE, Bose S, et al. Evidence-based evaluation of the risks of malignancy predicted by thyroid fine-needle aspiration biopsies. Diagn Cytopathol. 2010;38:252–9.

    PubMed  CAS  Google Scholar 

  28. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19:1159–65.

    Article  PubMed  Google Scholar 

  29. Prognosis. http://en.wikipedia.org/wiki/Prognosis#References.

  30. Hippocrates. http://en.wikipedia.org/wiki/Prognosis#References.

  31. Petosiris. http://en.wikipedia.org/wiki/Petosiris_to_Nechepso.

  32. Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008;77:81–97.

    Article  PubMed  Google Scholar 

  33. Breast cancer prognosis. http://www.cancer.gov/cancertopics/pdq/treatment/breast/Patient.

  34. Prediction. http://en.wikipedia.org/wiki/Prediction.

  35. Copeland AH. Predictions and probabilities. Erkenntnis. 2007;6:1572–8420.

    Google Scholar 

  36. Pepe MS. Evaluating technologies for classification and prediction in medicine. Stat Med. 2005;24:3687–96.

    Article  PubMed  CAS  Google Scholar 

  37. Mahapatra A. Lung cancer – genomics and personalized medicine. ACS Chem Biol. 2010;18:529–31.

    Article  CAS  Google Scholar 

  38. Bohr. http://www.quotationspage.com/quote/26159.html.

  39. Personalized Medicine. http://www.sciencedaily.com/news/health_medicine/personalized_medicine/.

  40. Jain KK. Innovative diagnostic technologies and their significance for personalized medicine. Mol Diagn Ther. 2010;14:141–7.

    Article  PubMed  CAS  Google Scholar 

  41. U.S. Congressional Budget Office. The long-term outlook for health care spending. http://www.cbo.gov/ftpdocs/MainText.3.1.shtml. Accessed 12 June 2010.

  42. Traficant J: What 2 liver transplants taught me about how to heal health care. http://www.foxnews.com/jim-traficant-healthcare. Accessed 12 June 2010.

  43. Drew EB: The quiet victory of the cigarette lobby: how it found the best filter yet – Congress. Atlantic Monthly. September 1965.

    Google Scholar 

  44. Deyo RA, Patrick DL. Hope or hype: the obsession with medical advances and the high cost of false promises. New York: AMACOM; 2005.

    Google Scholar 

  45. Hanby AM. The pathology of breast cancer and the role of the histopathology laboratory. Clin Oncol. 2005;17:234–9.

    Article  CAS  Google Scholar 

  46. Korkolis DP, Tsoli E, Fouskakis D, et al. Tumor histology and stage but not p53, Her2-neu, or cathepsin-D expression are independent prognostic factors in breast cancer patients. Anticancer Res. 2004;24:2061–8.

    PubMed  CAS  Google Scholar 

  47. Bilous M, Ades C, Armes J, et al. Predicting the HER2 status of breast cancer from basic histopathology data: an analysis of 1500 breast cancers as part of the HER2000 International Study. Breast. 2003;12:92–8.

    Article  PubMed  CAS  Google Scholar 

  48. Kim C, Taniyama Y, Paik S. Gene-expression-based prognostic and predictive markers for breast cancer. Arch Pathol Lab Med. 2009;133:855–9.

    PubMed  CAS  Google Scholar 

  49. Sandhu R, Parker JS, Jones WD, Livasy CA, Coleman WB. Microarray-based gene expression profiling for molecular classification of breast cancer and identification of new targets for therapy. Lab Med. 2010;41:364–72.

    Article  Google Scholar 

  50. Rettig RA, Jacobson PD, Farquhar CM, Aubry WM. False hope: bone marrow transplantation for breast cancer. New York: Oxford University Press; 2007.

    Google Scholar 

  51. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.

    Article  PubMed  CAS  Google Scholar 

  52. Anonymous. Cancer Statistics, 2009. Oklahoma City: American Cancer Society; 2009.

    Google Scholar 

  53. Page DL, Jensen RA, Simpson JF. Routinely-available indicators of prognosis in breast cancer. Breast Cancer Res Treat. 1998;51:195–208.

    Article  PubMed  CAS  Google Scholar 

  54. Klar M, Foeldi M, Markert S, Gitsch G, Stickeler E, Watermann D. Good prediction of the likelihood for sentinel lymph node metastasis by using the MSKCC nomogram in a German breast cancer population. Ann Surg Oncol. 2009;16:36–42.

    Article  Google Scholar 

  55. Rosen PP, Groshen S, Kinne DW, Norton L. Factors influencing prognosis in node-negative breast carcinoma: analysis of 767 T1N0M0./T2N0M0 patients with long-term followup. J Clin Oncol. 1993;11:2090–100.

    PubMed  CAS  Google Scholar 

  56. Scawn R, Shousha S. Morphologic spectrum of estrogen receptor-negative breast carcinoma. Arch Pathol Lab Med. 2002;126:325–30.

    PubMed  Google Scholar 

  57. Robertson JF, Ellis IO, Pearson D, Elston CW, Nicholson RI, Blamey RW. Biological factors of prognostic significance in locally-advanced breast cancer. Breast Cancer Res Treat. 1994;29:259–64.

    Article  PubMed  CAS  Google Scholar 

  58. Houssami N, Ciatto S, Ellis IO, Ambrogetti D. Underestimation of malignancy in breast core-needle biopsy: concepts and precise overall and category-specific estimates. Cancer. 2007;109:487–95.

    Article  PubMed  Google Scholar 

  59. Houssami N, Ciatto S, Bilous M, Vezzosi V, Bianchi S. Borderline breast core needle histology: predictive values for malignancy in lesions of uncertain malignant potential. Br J Cancer. 2007;96:1253–7.

    Article  PubMed  CAS  Google Scholar 

  60. Ciatto S, Houssami N, Ambrogetti D, et al. Accuracy and underestimation of malignancy of breast core needle biopsy: the Florence experience of over 4000 consecutive biopsies. Breast Cancer Res Treat. 2007;101:291–7.

    Article  PubMed  Google Scholar 

  61. Lee AH, Denley HE, Pinder SE, et al. Excision biopsy findings of patients with breast needle core biopsies reported as suspicious of malignancy or lesion of uncertain malignant potential. Histopathology. 2003;42:331–6.

    Article  PubMed  CAS  Google Scholar 

  62. Bonnett M, Wallis T, Rossmann M, et al. Histopathologic analysis of atypical lesions in image-guided core breast biopsies. Mod Pathol. 2003;16:154–60.

    Article  PubMed  Google Scholar 

  63. Dillon MF, McDermott EW, Hill AD, O’Doherty A, O’Higgins N, Quinn CM. Predictive value of breast lesions of “uncertain malignant potential” and “suspicious for malignancy” determined by needle core biopsy. Ann Surg Oncol. 2007;14:704–11.

    Article  PubMed  Google Scholar 

  64. Margenthaler JA, Duke D, Monsees BS, Baraton PT, Clark C, Dietz JR. Correlation between core biopsy and excisional biopsy in breast high-risk lesions. Am J Surg. 2006;192:534–7.

    Article  PubMed  Google Scholar 

  65. Simpson JF, Page DL. Pathology of preinvasive and excellent-prognosis breast cancer. Curr Opin Oncol. 2001;13:426–30.

    Article  PubMed  CAS  Google Scholar 

  66. Page DL. Special types of invasive breast cancer, with clinical implications. Am J Surg Pathol. 2003;27:832–5.

    Article  PubMed  Google Scholar 

  67. Pia-Foschini M, Reis-Filho JS, Eusebi V, Lakhani SR. Salivary gland-like tumours of the breast: surgical and molecular pathology. J Clin Pathol. 2003;56:497–506.

    Article  PubMed  CAS  Google Scholar 

  68. Weigel RJ, Ikeda DM, Nowels KW. Primary squamous cell carcinoma of the breast. South Med J. 1996;89:511–5.

    Article  PubMed  CAS  Google Scholar 

  69. Van Hoeven KH, Drudis T, Cranor ML, Erlandson RA, Rosen PP. Low-grade adenosquamous carcinoma of the breast. A clinicopathologic study of 32 cases with ultrastructural analysis. Am J Surg Pathol. 1993;17:248–58.

    Article  PubMed  Google Scholar 

  70. Toikkanen S. Primary squamous cell carcinoma of the breast. Cancer. 1981;48:1629–32.

    Article  PubMed  CAS  Google Scholar 

  71. Barnes PJ, Boutilier R, Chiasson D, Rayson D. Metaplastic breast carcinoma: clinical-pathologic characteristics and HER2/neu expression. Breast Cancer Res Treat. 2005;91:173–8.

    Article  PubMed  CAS  Google Scholar 

  72. Beatty JD, Atwood M, Tickman R, Reiner M. Metaplastic breast cancer: clinical significance. Am J Surg. 2006;191:657–64.

    Article  PubMed  Google Scholar 

  73. Foschini MP, Krausz T. Salivary gland-type tumors of the breast: a spectrum of benign and malignant tumors including “triple negative carcinomas” of low malignant potential. Semin Diagn Pathol. 2010;27: 77–90.

    Article  PubMed  Google Scholar 

  74. Ravdin PM. Should HER2 status be routinely measured for all breast cancer patients? Semin Oncol. 1999;26(4 Supp 12):117–23.

    PubMed  CAS  Google Scholar 

  75. Yu JI, Choi DH, Park W, et al. Differences in prognostic factors and patterns of failure between invasive micropapillary carcinoma and invasive ductal carcinoma of the breast: matched case-control study. Breast. 2010;19:231–7.

    Article  PubMed  CAS  Google Scholar 

  76. Pettinato G, Manivel JC, Panico L, Sparano L, Petrella G. Invasive micropapillary carcinoma of the breast: clinicopathologic study of 62 cases of a poorly-recognized variant with highly-aggressive behavior. Am J Clin Pathol. 2004;121:857–66.

    Article  PubMed  Google Scholar 

  77. Wade PM Jr, Mills SE, Read M, Cloud W, Lambert MJ III, Smith RE: Small-cell neuroendocrine (oat-cell) carcinoma of the breast. Cancer. 1983;52:121–5; Shin SJ, DeLellis RA, Ying L, Rosen PP. Small-cell carcinoma of the breast: a clinicopathologic and immunohistochemical study of nine patients. Am J Surg Pathol. 2000;24:1231–8; Yamaguchi R, Tanaka M, Otsuka H, et al. Neuroendocrine small cell carcinoma of the breast: report of a case. Med Mol Morphol. 2009;42:58–61.

    Google Scholar 

  78. Richardson RL, Weiland LH. Undifferentiated small-cell carcinomas in extrapulmonary sites. Semin Oncol. 1982;9:484–96.

    PubMed  CAS  Google Scholar 

  79. Moore JM. Undifferentiated adenocarcinoma of breast. Tex State J Med. 1953;49:603–4.

    PubMed  CAS  Google Scholar 

  80. Kirsten F, Chi CH, Leary JA, Ng AB, Hedley DW, Tattersall MH. Metastatic adeno- or undifferentiated carcinoma from an unknown site – natural history and guidelines for identification of treatable subsets. Q J Med. 1987;62:143–61.

    PubMed  CAS  Google Scholar 

  81. Soomro S, Shousha S, Taylor P, Shepard HJ, Feldmann M. c-erbB-2 expression in different histological types of invasive breast carcinoma. J Clin Pathol. 1991;44:211–4.

    Article  PubMed  CAS  Google Scholar 

  82. Martinazzi M, Crivelli F, Zampatti C, Martinazzi S. Epidermal growth factor receptor immunohistochemistry in different histological types of infiltrating breast carcinoma. J Clin Pathol. 1993;46:1009–10.

    Article  PubMed  CAS  Google Scholar 

  83. Miller WR, Ellis IO, Sainsbury J, Dixon JM. ABCs of breast diseases: prognostic factors. Br Med J. 1994;309:1573–6.

    Article  CAS  Google Scholar 

  84. Mansour EG, Ravdin PM, Dressler L. Prognostic factors in early breast carcinoma. Cancer. 1994;74:381–400.

    Article  PubMed  CAS  Google Scholar 

  85. Seidman JD, Schnaper LA, Aisner SC. Relationship of the size of the invasive component of the primary breast carcinoma to axillary lymph node metastasis. Cancer. 1995;75:65–71.

    Article  PubMed  CAS  Google Scholar 

  86. Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24, 740 breast cancer cases. Cancer. 1989;63:181–7.

    Article  PubMed  CAS  Google Scholar 

  87. Iwasa Y, Nowak MA, Michor F. Evolution of resistance during clonal expansion. Genetics. 2006;172:2557–66.

    Article  PubMed  Google Scholar 

  88. Garcia SB, Norelli M, Wright NA. The clonal origin and clonal evolution of epithelial tumors. Int J Exp Pathol. 2000;81:89–116.

    Article  PubMed  CAS  Google Scholar 

  89. Flanagan FL, McDermott MB, Barton PT, et al. Invasive breast cancer: mammographic measurement. Radiology. 1996;199:819–23.

    PubMed  CAS  Google Scholar 

  90. Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer: a study of 1409 cases, of which 359 have been followed for 15 years. Br J Cancer. 1957;11:359–77.

    Article  PubMed  CAS  Google Scholar 

  91. Scarff RW, Torloni H. Histological typing of breast tumors. In: International histological classification of tumours, No. 2, Vol. 2. Geneva: World Health Organization; 1968. p. 13–20.

    Google Scholar 

  92. Le Doussal V, Tubiana-Hulin M, Friedman S, Hacene K, Spyratos F, Brunet M. Prognostic value of histologic grade nuclear components of Scarff-Bloom-Richardson (SBR): an improved score modification based on a multivariate analysis of 1262 invasive ductal breast carcinomas. Cancer. 1989;64:1914–21.

    Article  PubMed  Google Scholar 

  93. Simpson JF, Page DL. The role of pathology in premalignancy and as a guide for treatment and prognosis in breast cancer. Semin Oncol. 1996;23:428–35.

    PubMed  CAS  Google Scholar 

  94. Simpson JF, Page DL. Status of breast cancer prognostication based on histopathologic data. Am J Clin Pathol. 1994;102(Suppl):S3–8.

    PubMed  CAS  Google Scholar 

  95. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term followup. Histopathology. 1991;19:403–10.

    Article  PubMed  CAS  Google Scholar 

  96. Frierson Jr HF, Wolber RA, Berean KW, et al. Inter-observer reproducibility of the Nottingham modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal carcinoma. Am J Clin Pathol. 1995;103:195–8.

    PubMed  Google Scholar 

  97. Contesso G, Jotti GS, Bonadonna G. Tumor grade as a prognostic factor in primary breast cancer. Eur J Cancer Clin Oncol. 1989;25:403–9.

    Article  PubMed  CAS  Google Scholar 

  98. Todd JH, Dowle C, Williams MR, et al. Confirmation of a prognostic index in primary breast cancer. Br J Cancer. 1987;56:489–92.

    Article  PubMed  CAS  Google Scholar 

  99. Imber G. Genius on the edge. New York: Kaplan; 2010.

    Google Scholar 

  100. Williams BC. The history of mastectomy. http://www.ehow.com/about_5505904_history-mastectomy.html. Accessed 19 June 2010.

  101. Halsted WS. The results of radical operations for the cure of carcinoma of the breast performed at the Johns Hopkins Hospital from June 1889 to January 1894. Johns Hopkins Hosp Rep. 1894;4:297–327.

    Google Scholar 

  102. Bland CS. The Halsted mastectomy: present illness and past history. West J Med. 1981;134:549–55.

    PubMed  CAS  Google Scholar 

  103. Wick MR. Principles of evidence-based medicine as applied to “sentinel” lymph node biopsies. Pathol Case Rev. 2008;13:102–8.

    Article  Google Scholar 

  104. Fisher B, Wolmark N, Redmond C, et al. Findings from NSABP Protocol No. B-04: comparison of radical mastectomy with alternative treatments. II. The clinical and biologic significance of medial-central breast cancers. Cancer. 1981;48:1863–72.

    Article  PubMed  CAS  Google Scholar 

  105. Sanghani M, Balk EM, Cady B. Impact of axillary lymph node dissection on breast cancer outcome in clinically node negative patients: a systematic review and meta-analysis. Cancer. 2009;115:1613–20.

    Article  PubMed  Google Scholar 

  106. Collan YU, Eskelinen MJ, Nordling SA, et al. Prognostic studies in breast cancer – multivariate combination of nodal status, proliferation index, tumor size, and DNA ploidy. Acta Oncol. 1994;33:873–8.

    Article  PubMed  CAS  Google Scholar 

  107. Quiet CA, Ferguson DJ, Weichselbaum RR, Hellman S. Natural history of node-positive breast cancer: the curability of small cancers with a limited number of positive nodes. J Clin Oncol. 1996;14:3105–11.

    PubMed  CAS  Google Scholar 

  108. Beal SH, Martinez SR, Canter RJ, Chen SL, Khatri VP, Bold RJ. Survival in 12, 653 breast cancer patients with extensive axillary lymph node metastasis in the anthracycline era. Med Oncol. 2010;27(4):1420–4.

    Article  PubMed  Google Scholar 

  109. Sahin AA, Guray M, Hunt KK. Identification and biologic significance of micrometastases in axillary lymph nodes in patients with invasive breast cancer. Arch Pathol Lab Med. 2009;133:869–78.

    PubMed  Google Scholar 

  110. Hansen NM, Grube B, Ye X, Turner RR, Brenner RJ, Sim MS, et al. Impact of micrometastases in the sentinel node of patients with invasive breast cancer. J Clin Oncol. 2009;27:4679–84.

    Article  PubMed  Google Scholar 

  111. Viale G, Dell’Orto P, Biasi MO, et al. Comparative evaluation of an extensive histopathologic examination and a real-time reverse-transcription-polymerase chain reaction assay for mammaglobin and cytokeratin-19 on axillary sentinel lymph nodes of breast carcinoma patients. Ann Surg. 2008;247:136–42.

    Article  PubMed  Google Scholar 

  112. Douglas-Jones AG, Woods V. Molecular assessment of sentinel lymph nodes in breast cancer management. Histopathology. 2009;55:107–13.

    Article  PubMed  Google Scholar 

  113. Karam AK, Hsu M, Patil S, et al. Predictors of completion axillary lymph node dissection in patients with positive sentinel lymph nodes. Ann Surg Oncol. 2009;16:1952–8.

    Article  PubMed  Google Scholar 

  114. Pernas S, Gil M, Benítez A, et al. Avoiding axillary treatment in sentinel lymph node micrometastases of breast cancer: a prospective analysis of axillary or distant recurrence. Ann Surg Oncol. 2010;17:772–7.

    Article  PubMed  Google Scholar 

  115. Gurleyik G, Gurleyik E, Aker F, et al. Lymphovascular invasion, as a prognostic marker in patients with invasive breast cancer. Acta Chir Belg. 2007;107:284–7.

    PubMed  CAS  Google Scholar 

  116. Nime FA, Rosen PP, Thaler HT, Ashikari R, Urban JA. Prognostic significance of tumor emboli in intramammary lymphatics in patients with mammary carcinoma. Am J Surg Pathol. 1977;1:25–30.

    Article  PubMed  CAS  Google Scholar 

  117. Rosen PP. Tumor emboli in intramammary lymphatics in breast carcinoma: pathologic criteria for diagnosis and clinical significance. Pathol Annu. 1983;18(Pt 2):215–32.

    PubMed  Google Scholar 

  118. Lee AH, Pinder SE, Macmillan RD, Mitchell M, Ellis IO, Elston CW, et al. Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur J Cancer. 2006;42:357–62.

    Article  PubMed  CAS  Google Scholar 

  119. Trudeau ME, Pritchard KI, Chapman JA, et al. Prognostic factors affecting the natural history of node-negative breast cancer. Breast Cancer Res Treat. 2005;89:35–45.

    Article  PubMed  Google Scholar 

  120. de Mascarel I, MacGrogan G, Debled M, Sierankowski G, Brouste V, Mathoulin-Pélissier S, et al. D2-40 in breast cancer: should we detect more vascular emboli? Mod Pathol. 2009;22:216–22.

    Article  PubMed  Google Scholar 

  121. Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Invest. 2002;82:1255–12557.

    PubMed  Google Scholar 

  122. Arnaout-Alkarain A, Kahn HJ, Narod SA, Sun PA, Marks AN. Significance of lymph vessel invasion identified by the endothelial lymphatic marker D2-40 in node negative breast cancer. Mod Pathol. 2007;20:183–91.

    Article  PubMed  CAS  Google Scholar 

  123. Almholt K, Nielsen BS, Frandsen TL, et al. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice. Oncogene. 2003;22:4389–97.

    Article  PubMed  CAS  Google Scholar 

  124. Kilinc N, Yaldiz M. p53, c-erbB-2 expression, and steroid hormone receptors in breast carcinoma: correlations with histopathological parameters. Eur J Gynaecol Oncol. 2004;25:606–10.

    PubMed  CAS  Google Scholar 

  125. Reed W, Hannisdal E, Boehler PJ, Gundersen S, Host H, Marthin J. The prognostic value of p53 and c-erbB-2 immunostaining is overrated for patients with lymph node-negative breast carcinoma: a multivariate analysis of prognostic factors in 613 patients with a followup of 14-30 years. Cancer. 2000;88:804–13.

    Article  PubMed  CAS  Google Scholar 

  126. Chiu CG, Masoudi H, Leung S, et al. HER-3 overexpression in prognostic of reduced breast cancer survival: a study of 4046 patients. Ann Surg. 2010;251:1107–16.

    Article  PubMed  Google Scholar 

  127. Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10, 159 cases from 12 studies. PLoS Med. 2010;7(5):e1000279.

    Article  PubMed  Google Scholar 

  128. Putti TC, El-Rehim DM, Rakha EA, et al. Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol. 2005;18:26–36.

    Article  PubMed  CAS  Google Scholar 

  129. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109:25–32.

    Article  PubMed  CAS  Google Scholar 

  130. Erdem O, Dursun A, Coskun U, Gunel N. The prognostic value of p53 and c-erbB-2 expression, proliferative activity, and angiogenesis in node-negative breast carcinoma. Tumori. 2005;91:46–52.

    PubMed  CAS  Google Scholar 

  131. Horita K, Yamaguchi A, Hirose K, et al. Prognostic factors affecting disease-free survival rate following surgical resection of primary breast cancer. Eur J Histochem. 2001;45:73–84.

    PubMed  CAS  Google Scholar 

  132. Lialiaris TS, Georgiou G, Sivridis E, et al. Prognostic and predictive factors of invasive ductal breast carcinomas. J BUON. 2010;15:79–88.

    PubMed  CAS  Google Scholar 

  133. Lai P, Tan LK, Chen B. Correlation of HER-2 status with estrogen and progesterone receptors and histologic features in 3, 655 invasive breast carcinomas. Am J Clin Pathol. 2005;123:541–6.

    Article  CAS  Google Scholar 

  134. Cao XX, Xu JD, Liu XL, et al. RACK1: a superior independent predictor for poor clinical outcome in breast cancer. Int J Cancer. 2009;127(5):1172–9.

    Article  CAS  Google Scholar 

  135. Haupt B, Ro JY, Schwartz MR. Basal-like breast carcinoma: a phenotypically distinct entity. Arch Pathol Lab Med. 2010;134:130–3.

    PubMed  Google Scholar 

  136. Mirza M, Shaughnessy E, Hurley JK, et al. Osteopontin-c is a selective marker of breast cancer. Int J Cancer. 2008;122:889–97.

    Article  PubMed  CAS  Google Scholar 

  137. Sigurdsson H, Baldetorp B, Borg A, et al. Indicators of prognosis in node-negative breast cancer. N Engl J Med. 2990;322:1045–53.

    Article  Google Scholar 

  138. Sasano H. Histopathological prognostic factors in early breast carcinoma: an evaluation of cell ­proliferation in carcinoma cells. Expert Opin Investig Drugs. 2010;19 Suppl 1:S5–11.

    Article  PubMed  CAS  Google Scholar 

  139. Reis-Filho JS, Lakhani SR. Breast cancer special types: why bother? J Pathol. 2008;216:394–8.

    Article  PubMed  CAS  Google Scholar 

  140. Weigelt B, Geyer FC, Natrajan R, et al. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol. 2010;220:45–57.

    Article  PubMed  CAS  Google Scholar 

  141. Schnitt SJ. Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol. 2010;23 Suppl 2:S60–4.

    Article  PubMed  Google Scholar 

  142. Schmidt C. Assays that predict outcomes make slow progress toward prime time. J Natl Cancer Inst. 2010;102:677–9.

    Article  PubMed  Google Scholar 

  143. Thuerigen O, Schneeweiss A, Toedt G, et al. Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer. J Clin Oncol. 2006;24:1839–45.

    Article  PubMed  CAS  Google Scholar 

  144. Végran F, Boidot R, Coudert B, et al. Gene expression profile and response to trastuzumab-docetaxel-based treatment in breast carcinoma. Br J Cancer. 2009;101:1357–64.

    Article  PubMed  CAS  Google Scholar 

  145. Bohn OL, Nasir I, Brufsky A, et al. Biomarker profile in breast carcinomas presenting with bone metastasis. Int J Clin Exp Pathol. 2009;3:139–46.

    PubMed  Google Scholar 

  146. Nuyten DS, Kreike B, Hart AA, et al. Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res. 2006;8:R62.

    Article  PubMed  CAS  Google Scholar 

  147. Saal LH, Johansson P, Holm K, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA. 2007;104:7564–9.

    Article  PubMed  CAS  Google Scholar 

  148. Karlsson E, Delle U, Danielsson A, et al. Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer. BMC Cancer. 2008;8:254.

    Article  PubMed  CAS  Google Scholar 

  149. Konstantinovsky S, Smith Y, Zilber S, et al. Breast carcinoma cells in primary tumors and effusions have different gene array profiles. J Oncol. 2010;2010:969084.

    Google Scholar 

  150. Staaf J, Ringnér M, Vallon-Christersson J, et al. Identification of subtypes in human epidermal growth factor receptor 2–positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol. 2010;28:1813–20.

    Article  PubMed  Google Scholar 

  151. Charpin C, Secq V, Giusiano S, et al. A signature predictive of disease outcome in breast carcinomas, identified by quantitative immunocytochemical assays. Int J Cancer. 2009;124:2124–34.

    Article  PubMed  CAS  Google Scholar 

  152. Kreipe HH, Ahrens P, Christgen M, Lehmann U, Langer F. Beyond staging, typing, and grading: new challenges in breast cancer pathology. Pathologe. 2010;31:54–9.

    Article  PubMed  CAS  Google Scholar 

  153. Giusiano S, Secq V, Carcopino X, et al. Immunohistochemical profiling of node negative breast carcinomas allows prediction of metastatic risk. Int J Oncol. 2010;36:889–98.

    PubMed  Google Scholar 

  154. Cox G, Jones JL, Andi A, Waller DA, O’Byrne KJ. A biological staging model for operable non-small-cell lung cancer. Thorax. 2001;56:561–6.

    Article  PubMed  CAS  Google Scholar 

  155. Li AR, Chitale D, Riely GJ, et al. EGFR mutations in lung adenocarcinomas: clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression. J Mol Diagn. 2008;10:242–8.

    Article  PubMed  CAS  Google Scholar 

  156. Sholl LM, Xiao Y, Joshi V, et al. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol. 2010;133:922–34.

    Article  PubMed  CAS  Google Scholar 

  157. Anonymous. Types of data. http://www.changingminds.org/explanations/research/measurements/types-data.htm. Accessed 19 June 2010.

  158. Stroup RM, Pinkus GS. S100-immunoreactivity in primary and metastatic carcinoma of the breast: a potential source of error in immunodiagnosis. Hum Pathol. 1988;19:949–53.

    Article  PubMed  CAS  Google Scholar 

  159. Wick MR, Patterson JW. Multimodal pathologic diagnosis of malignant melanoma: integration of morphology, histochemistry, immunohistology, and electron microscopy. J Histotechnol. 2003;26:253–8.

    Google Scholar 

  160. Wick MR, Lillemoe TJ, Copland GT, Swanson PE, Manivel JC, Kiang DT. Gross cystic disease fluid protein-15 as a marker for breast cancer. Hum Pathol. 1989;20:281–7.

    Article  PubMed  CAS  Google Scholar 

  161. Miller RT, Swanson PE, Wick MR. Fixation and epitope retrieval in diagnostic immunohistochemistry: a concise review with practical considerations. Appl Immunohistochem Mol Morphol. 2000;8:228–35.

    Article  PubMed  CAS  Google Scholar 

  162. Idikio HA. Immunohistochemistry in diagnostic surgical pathology: contributions of protein life-cycle, use of evidence-based methods, and data normalization on interpretation of immunohistochemical stains. Int J Clin Exp Pathol. 2010;3:169–76.

    CAS  Google Scholar 

  163. Allred DC, Carlson RW, Berry DA, et al. NCCN Task Force Report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J Natl Compr Cancer Netw. 2009;Suppl 6:S1–21.

    Google Scholar 

  164. Canadian Association of Pathologists-Association canadienne des pathologistes National Standards Committee, Torlakovic EE, Riddell R, Banerjee D, et al. Best practice recommendations for standardization of immunohistochemistry tests. Am J Clin Pathol. 2010;133:354–65.

    Article  PubMed  Google Scholar 

  165. Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. Comparison of fluorescence in situ hybridization and immunohistochemistry for the evaluation of HER-2/neu in breast cancer. J Clin Oncol. 1999;17:1974–82.

    PubMed  CAS  Google Scholar 

  166. Kakar S, Puangsuvan N, Stevens JM, et al. HER-2/neu assessment in breast cancer by immunohistochemistry and fluorescence in situ hybridization: comparison of results and correlation with survival. Mol Diagn. 2000;5:199–207.

    Article  PubMed  CAS  Google Scholar 

  167. Van de Vijver MJ. Assessment of the need and appropriate method for testing for the human epidermal growth factor receptor-2 (HER2). Eur J Cancer. 2001;37 Suppl 1:11–7.

    Article  PubMed  Google Scholar 

  168. McCormick SR, Lillemoe TJ, Beneke J, Schrauth J, Reinartz J. HER2 assessment by immunohistochemical analysis and fluorescence in situ hybridization: comparison of HercepTest and PathVysion commercial assays. Am J Clin Pathol. 2002;117:935–43.

    Article  PubMed  CAS  Google Scholar 

  169. Lal P, Salazar PA, Hudis CA, Ladanyi M, Chen B. HER-2 testing in breast cancer using immunohistochemical analysis and fluorescence in-situ hybridization: a single-institution experience of 2, 279 cases and comparison of dual-color and single-color scoring. Am J Clin Pathol. 2004;121:631–6.

    Article  PubMed  Google Scholar 

  170. Ross JS, Fletcher JA, Bloom KJ, et al. HER-2/neu testing in breast cancer. Am J Clin Pathol. 2003;120(Suppl):S53–71.

    PubMed  Google Scholar 

  171. Mrozkowiak A, Olszewski WP, Piascik A, Olszewski WT. HER2 status in breast cancer determined by IHC and FISH: comparison of the results. Pol J Pathol. 2004;55:165–71.

    PubMed  CAS  Google Scholar 

  172. Ellis CM, Dyson MJ, Stephenson TJ, Maltby EL. HER2 amplification status in breast cancer: a comparison between immunohistochemical staining and fluorescence in situ hybridization using manual and automated quantitative image analysis scoring techniques. J Clin Pathol. 2005;58:710–4.

    Article  PubMed  CAS  Google Scholar 

  173. Dolan M, Snover DC. Comparison of immunohistochemical and fluorescence in situ hybridization assessment of HER-2 status in routine practice. Am J Clin Pathol. 2005;123:766–70.

    Article  PubMed  CAS  Google Scholar 

  174. Benohr P, Henkel V, Speer R, et al. HER-2/neu expression in breast cancer – a comparison of different diagnostic methods. Anticancer Res. 2005;25(3B):1895–900.

    PubMed  CAS  Google Scholar 

  175. Egervari K, Szollosi Z, Nemes Z, Kaczur V. Comparison of immunohistochemical and fluorescence in situ hybridization assessment of HER-2 status in routine practice. Am J Clin Pathol. 2006;125:155–6.

    PubMed  Google Scholar 

  176. Sui W, Ou M, Chen J, et al. Comparison of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assessment for HER-2 status in breast cancer. World J Surg Oncol. 2009;7:83.

    Article  PubMed  Google Scholar 

  177. Mayr D, Heim S, Weyrauch K, et al. Chromogenic in situ hybridization for HER-2/neu-oncogene in breast cancer: comparison of a new dual-color chromogenic in situ hybridization with immunohistochemistry and fluorescence in situ hybridization. Histopathology. 2009;55:716–23.

    Article  PubMed  Google Scholar 

  178. Krug LM, Crapanzano JP, Azzoli CG, et al. Imatinib mesylate lacks activity in small cell lung carcinoma expression c-kit protein: a phase II clinical trial. Cancer. 2005;103:2128–31.

    Article  PubMed  CAS  Google Scholar 

  179. Koch CA, Gimm O, Vortmeyer AO, et al. Does the expression of c-kit (CD117) in neuroendocrine tumors represent a target for therapy? Ann NY Acad Sci. 2006;1073:517–26.

    Article  PubMed  CAS  Google Scholar 

  180. Sharma S. Applied multivariate techniques. Hoboken: Wiley; 1995.

    Google Scholar 

  181. Rasmussen BB, Thorpe SM, Norgaard T, Rasmussen J, Agdal N, Rose C. Immunohistochemical steroid receptor detection in frozen breast cancer tissue: a multicenter investigation. Acta Oncol. 1988;27:757–60.

    Article  PubMed  CAS  Google Scholar 

  182. Andersen J, Thorpe SM, King WJ, et al. The prognostic value of immunohistochemical estrogen receptor analysis in paraffin-embedded and frozen sections versus that of steroid-binding assays. Eur J Cancer. 1990;25:442–9.

    Google Scholar 

  183. Wilbur DC, Willis J, Mooney RA, Fallon MA, Moynes R, di Sant’Agnese PA. Estrogen and progesterone receptor detection in archival formalin-fixed, paraffin-embedded tissue from breast carcinoma: a comparison of immunohistochemistry with the dextran-coated charcoal assay. Mod Pathol. 1992;5:79–84.

    PubMed  CAS  Google Scholar 

  184. Valgardsdottir R, Tryggvadottir L, Steinarsdottir M, et al. Genomic instability and poor prognosis associated with abnormal TP53 in breast carcinomas: molecular and immunohistochemical analysis. APMIS. 1997;105:121–30.

    Article  PubMed  CAS  Google Scholar 

  185. Sjogren S, Inganas M, Norberg T, et al. The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J Natl Cancer Inst. 1996;88:173–82.

    PubMed  CAS  Google Scholar 

  186. Thorlacius S, Thorgilsson B, Bjornsson J, et al. TP53 mutations and abnormal p53 protein staining in breast carcinomas related to prognosis. Eur J Cancer. 1995;31A:1856–61.

    Article  PubMed  CAS  Google Scholar 

  187. Umekita Y, Kobayashi K, Saheki T, Yoshida H. Nuclear accumulation of p53 correlates with mutations in the p53 gene on archival paraffin-embedded tissues of human breast cancer. Jpn J Cancer Res. 1994;85:825–30.

    Article  PubMed  CAS  Google Scholar 

  188. MacGeoch C, Barnes DM, Newton JA, et al. p53 protein detected by immunohistochemical staining is not always mutant. Dis Markers. 1993;11:239–50.

    PubMed  CAS  Google Scholar 

  189. Dunn JM, Hastrich DJ, Newcomb P, Webb JC. Maitland, Farndon JR: Correlation between p53 mutations and antibody staining in breast carcinoma. Br J Surg. 1993;80:1410–2.

    Article  PubMed  CAS  Google Scholar 

  190. Miles J: Getting the sample size right: a brief introduction to power analysis. http://www.jeremymiles.co.uk/misc/power/. Accessed 19 June 2010.

  191. The Health Insurance Portability and Accountability Act. http://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act/. Accessed 19 June 2010.

  192. Anonymous. In-Memoriam: William L. McGuire. Breast Cancer Res Treat 1992;23:7–15.

    Google Scholar 

  193. McGuire WL. Breast cancer prognostic factors: evaluation guidelines. J Natl Cancer Inst. 1991;83:154–5.

    Article  PubMed  CAS  Google Scholar 

  194. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  PubMed  CAS  Google Scholar 

  195. Trastuzumab. http://en.wikipedia.org/wiki/trastuzumab/. Accessed 19 June 2010.

  196. Kute T, Lack CM, Willingham M, et al. Development of herceptin resistance in breast cancer cells. Cytometry. 2004;57A:86–93.

    Article  CAS  Google Scholar 

  197. Tan AR, Swain SM. Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol. 2002;30(5 Suppl 16):54–64.

    Google Scholar 

  198. Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res. 2003;9:5038–48.

    Google Scholar 

  199. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER-2-positive breast cancer. N Engl J Med. 2005;353:1673–84.

    Article  PubMed  CAS  Google Scholar 

  200. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER-2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    Article  PubMed  CAS  Google Scholar 

  201. Lewis R, Bagnall AM, Forbges C, et al. The clinical effectiveness of trastuzumab for breast cancer: a systematic review. Health Technol Assess. 2002;6:1–71.

    Google Scholar 

  202. http://www.bpac.org/nz/magazine/2007/april/herceptin.asp. Accessed 19 June 2010.

  203. http://www.sws-pct.nhs.uk/PEC/2005/061205/Enc_08.pdf. Accessed 19 June 2010.

  204. Anonymous: Herceptin or trastuzumab: efficacy and side effects. http://healthlifeandstuff.com/2009/12/herceptin-or-trastuzumab-efficacy-side-effects/. Accessed 19 June 2010.

  205. Abelson J, Collins PA. Media hyping and the “herceptin access story:” an analysis of Canadian and UK newspaper coverage. Healthc Policy. 2009;4:e113–28.

    PubMed  Google Scholar 

  206. Hedgecoe AM. It’s money that matters: the financial context of ethical decision-making in modern biomedicine. Sociol Health Illn. 2006;28:768–84.

    Article  PubMed  Google Scholar 

  207. Williams C, Brunskill S, Altman D, et al. Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy. Health Technol Assess. 2006;10:1–204.

    PubMed  Google Scholar 

  208. Nakhleh RE, Grimm EE, Idowu MO, Souers RJ, Fitzgibbons PL. Laboratory compliance with the American Society of Clinical Oncology/college of American Pathologists guidelines for human epidermal growth factor receptor 2 testing: a College of American Pathologists survey of 757 laboratories. Arch Pathol Lab Med. 2010;134:728–34.

    PubMed  Google Scholar 

  209. Sauter G, Lee J, Bartlett JM, Slamon DJ, Press MF. Guidelines for human epidermal growth factor receptor-2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27:1323–33.

    Article  PubMed  CAS  Google Scholar 

  210. Turashvili G, Leung S, Turbin D, et al. Interobserver reproducibility of HER2 immunohistochemical assessment and concordance with fluorescent in situ hybridization (FISH): pathologist assessment compared to quantitative image analysis. BMC Cancer. 2009;9:165.

    Article  PubMed  CAS  Google Scholar 

  211. Jacobs TW, Prioleau JE, Stillman IE, Schnitt SJ. Loss of tumor marker-immunostaining intensity on stored paraffin slides of breast cancer. J Natl Cancer Inst. 1996;88:1054–9.

    Article  PubMed  CAS  Google Scholar 

  212. Mandrekar SJ, Sargent DJ. Predictive biomarker validation in practice: lessons from real trials. Clin Trials. 2010;7(5):567–73.

    Article  PubMed  Google Scholar 

  213. Richter-Ehrenstein C, Muller S, Noske A, Schneider A. Diagnostic accuracy and prognostic value of core biopsy in the management of breast cancer: a series of 542 patients. Int J Surg Pathol. 2009;17:323–6.

    Article  PubMed  Google Scholar 

  214. Nassar A, Radhakrishnan A, Cabrero IA, Cotsonis GA, Cohen C. Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study. Appl Immunohistochem Mol Morphol. 2010;18(5):433–41.

    PubMed  CAS  Google Scholar 

  215. Powell WC, Hicks DG, Prescott N, et al. A new rabbit monoclonal antibody (4B5) for the immunohistochemical (IHC) determination of the HER2 status in breast cancer: comparison with CB11, fluorescence in situ hybridization (FISH), and interlaboratory reproducibility. Appl Immunohistochem Mol Morphol. 2007;15:94–102.

    Article  PubMed  CAS  Google Scholar 

  216. Wasielewski R, Hasselmann S, Ruschoff J, Fisseler-Eckhoff A, Kreipe H. Proficiency testing of immunohistochemical biomarker assays in breast cancer. Virchows Arch. 2008;453:537–43.

    Article  PubMed  CAS  Google Scholar 

  217. Terry J, Torlakovic EE, Garratt J, et al. Implementation of a Canadian external quality assurance program for breast cancer biomarkers: an initiative of Canadian Quality Control in immunohistochemistry (cIQc) and Canadian Association of Pathologists (CAP) National Standards Committee/Immunohistochemistry. Appl Immunohistochem Mol Morphol. 2009;17:375–82.

    Article  PubMed  Google Scholar 

  218. Hanley KZ, Birdsong GG, Cohen C, Siddiqui MT. Immunohistochemical detection of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression in breast carcinomas: comparison on cell block, needle-core, and tissue block preparations. Cancer Cytopathol. 2009;117:279–88.

    Article  Google Scholar 

  219. Liu YH, Xu FP, Rao JY, et al. Justification of the change from 10% to 30% for the immunohistochemical HER2 scoring criterion in breast cancer. Am J Clin Pathol. 2009;132:74–9.

    Article  PubMed  CAS  Google Scholar 

  220. Davoli A, Hocevar BA, Brown TL. Progression and treatment of HER2-positive breast cancer. Cancer Chemother Pharmacol. 2010;65:611–23.

    Article  PubMed  CAS  Google Scholar 

  221. Walker JR, Singal PK, Jassal DS. The art of healing broken hearts in breast cancer patients: trastuzumab and heart failure. Exp Clin Cardiol. 2009;14:e62–7.

    PubMed  CAS  Google Scholar 

  222. Köninki K, Barok M, Tanner M, et al. Multiple molecular mechanisms underlying trastuzumab and lapatinib resistance in JIMT-1 breast cancer cells. Cancer Lett. 2010;294:211–9.

    Article  PubMed  CAS  Google Scholar 

  223. Tagliabue E, Balsari A, Campiglio M, Pupa SM. HER2 as a target for breast cancer therapy. Expert Opin Biol Ther. 2010;10:711–24.

    Article  PubMed  CAS  Google Scholar 

  224. Geiger S, Lange V, Suhl P, Heinermann V, Stemmler HJ. Anticancer therapy-induced cardiotoxicity: review of the literature. Anticancer Drugs. 2010;21:578–90.

    Article  PubMed  CAS  Google Scholar 

  225. Baselga J. Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology. 2001;61 Suppl 2:14–21.

    Article  PubMed  CAS  Google Scholar 

  226. Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol. 2010;28:92–8.

    Article  PubMed  CAS  Google Scholar 

  227. Elkin EB, Weinstein MC, Winer EP, Kuntz KM, Schnitt SJ, Weeks JC. HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis. J Clin Oncol. 2004;22:854–63.

    Article  PubMed  Google Scholar 

  228. Fitzgibbons PL, Page DL, Weaver D, et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124:966–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Wick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wick, M.R., Swanson, P.E., Marchevsky, A.M. (2011). Prognostication and Prediction in Anatomic Pathology: Carcinoma of the Breast as an Illustrative Model. In: Marchevsky, A., Wick, M. (eds) Evidence Based Pathology and Laboratory Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1030-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1030-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1029-5

  • Online ISBN: 978-1-4419-1030-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics