Hydrogen Storage

  • Robert A. Huggins


Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to be a clean, reliable, and affordable energy source, and has the major advantage that the product of its combustion with oxygen is water, rather than CO and CO2,which contain carbon and are considered greenhouse gases. It is expected to play a major role in future energy systems.


Fuel Cell Hydrogen Storage Internal Combustion Engine Metal Hydride Standard Gibbs Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Barin, Thermochemical Data of Pure Substances, 3rd Edition, VCH, New York (1995)CrossRefGoogle Scholar
  2. 2.
    J.J. Cuomo and J.M. Woodall, US Patent 4,358,291, November 9, 1982Google Scholar
  3. 3.
    J.M. Woodall, J. Ziebarth and C.R. Allen, Proc. 2nd Energy Nanotechnology International Conference, Santa Clara, CA, Sept. 5, 2007Google Scholar
  4. 4.
    J.M. Woodall, J.T. Ziebarth, C.R. Allen, D.M. Sherman, J. Jeon and G. Choi, Proc. Hydrogen 2008, Feb. 2008Google Scholar
  5. 5.
    J.M. Woodall, J. Ziebarth, C.R. Allen, J. Jeon, G. Choi and R. Kramer, Clean Technology, June 1, 2008Google Scholar
  6. 6.
    J.M. Woodall, Presentation at the Electrochemical Society Meeting, San Francisco, May 26, 2009. To be publishedGoogle Scholar
  7. 7.
    M. Graetzl, Nature 414, 15 (2001)Google Scholar
  8. 8.
    G.W. Crabtree, M.S. Dresselhaus and M.V. Buchanan, Phys Today 57, 39 (2004)CrossRefGoogle Scholar
  9. 9.
    M. Graetzl, Inorg Chem 44, 6841 (2005)CrossRefGoogle Scholar
  10. 10.
    G.W. Crabtree and M.S. Dresselhaus, MRS Bull 33, 421 (2008)CrossRefGoogle Scholar
  11. 11.
    National Hydrogen Energy Roadmap, US Department of Energy, November, 2002,
  12. 12.
    A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S. Smith, B.D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey, Angew Chem Int Ed 44, 3578 (2005)CrossRefGoogle Scholar
  13. 13.
    M.H. Matus, K.D. Anderson, D.M. Camaioni, S.T. Autrey and D.A. Dixon, J Phys Chem 111, 4411 (2007)CrossRefGoogle Scholar
  14. 14.
    C.W. Yoon and L.G. Sneddon, J Am Chem Soc 128, 13992 (2006)CrossRefGoogle Scholar
  15. 15.
    E. Muller, E. Sutter, P. Zahl, C.V. Ciobanu, P. Suttera, Appl Phys Lett 90, 151917 (2007)CrossRefGoogle Scholar
  16. 16.
    C.H. Christensen, T. Johannessen, R.Z. Soerensen and J.K. Norskov, Catal Today 111, 140 (2006)CrossRefGoogle Scholar
  17. 17.
    B.A. Boukamp and R.A. Huggins, Phys Lett 72A, 464 (1979)CrossRefGoogle Scholar
  18. 18.
    M. Taube and P. Taube, in Proc. of 3rd World Hydrogen Energy Conference, Tokyo (1980)Google Scholar
  19. 19.
    M. Taube, D. Rippin, W. Knecht, B. Milisavijevic and D. Hakimifard, Hydrogen Energy Progress V, ed. By T.N. Veziroglu and J.B. Taylor, Pergamon Press, New York (1984), p. 1341Google Scholar
  20. 20.
    G.W.H. Scherer, E. Newson and A. Wokaun, J Hydrogen Energy 24, 1157 (1999)CrossRefGoogle Scholar
  21. 21.
    A. Cooper, A. Scott, D. Fowler, F. Wilhelm, V. Monk, H. Cheng and G. Pez, Presentation at 2008 DOE Hydrogen Program Meeting, June, 2008;

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robert A. Huggins
    • 1
  1. 1.Department of Materials Science & EngineeringStanford UniversityStanfordUSA

Personalised recommendations