Advertisement

Energy Storage pp 291-317 | Cite as

Negative Electrodes in Lithium Systems

  • Robert A. Huggins
Chapter

Abstract

A great deal of attention is currently being given to the development and use of batteries in which lithium plays an important role. Looked at very simply, there are two major reasons for this. One is that lithium is a very electropositive element, and its employment in electrochemical cells can lead to larger voltages than are possible with the other alkali metals. The second positive aspect of lithium systems is the possibility of major reductions in weight, at least partly due to the light weight of elemental lithium and many of its compounds.

Keywords

Graphene Layer Negative Electrode Alloy Electrode Electroactive Species Rechargeable Lithium Batterie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.A. Huggins and D. Elwell, J. Crystal Growth 37, 159 (1977)CrossRefGoogle Scholar
  2. 2.
    C. Wagner, J. Electrochem. Soc. 101, 225 (1954)CrossRefGoogle Scholar
  3. 3.
    C. Wagner, J. Electrochem. Soc. 103, 571 (1956)CrossRefGoogle Scholar
  4. 4.
    G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)Google Scholar
  5. 5.
    U. von Sacken, E. Nodwell and J.R. Dahn, Solid State Ionics 69, 284 (1994)CrossRefGoogle Scholar
  6. 6.
    M. Winter, K.-C. Moeller and J.O. Besenhard, “Carbonaceous and Graphitic Anodes”, in Lithium Batteries, Science and Technology, ed. by G-A Nazri and G. Pistoia, Kluwer Academic Publishers (2004), p. 144Google Scholar
  7. 7.
    J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhong and U. von Sacken, “Carbons and Graphites as Substitutes for the Lithium Anode”, in Lithium Batteries, ed. by G. Pistoia, Elsevier (1994), p. 1Google Scholar
  8. 8.
    K. Fredenhagen and G. Cadenbach, Z. Anorg. Allg. Chem. 158, 249 (1926)CrossRefGoogle Scholar
  9. 9.
    D. Guerard and A. Herold, Carbon 13, 337 (1975)Google Scholar
  10. 10.
    G.K. Wertheim, P.M.Th.M. Van Attekum and S. Basu, Solid State Commun. 33, 1127 (1980)Google Scholar
  11. 11.
    L.B. Ebert, “Intercalation Compounds of Graphite”, in Annual Review of Materials Science, Vol. 6, ed. by R.A. Huggins, Annual Reviews, Inc. (1976), p. 181Google Scholar
  12. 12.
    J. O. Besenhard and H. P. Fritz, J. Electroanal. Chem. 53, 329 (1974)CrossRefGoogle Scholar
  13. 13.
    R. Yazami and P. Touzain, J. Power Sources 9, 365 (1983)CrossRefGoogle Scholar
  14. 14.
    S. Basu, U. S. Patent No 4,304,825 (Dec. 8, 1981)Google Scholar
  15. 15.
    S. Basu, U. S. Patent No 4,423,125 (Dec. 27, 1983)Google Scholar
  16. 16.
    T. Nagaura and K. Tozawa, in Progress in Batteries and Solar Cells, JEC Press, Inc. 9, 209 (1990)Google Scholar
  17. 17.
    T. Nagaura, in Progress in Batteries and Solar Cells, JEC Press, Inc. 10, 218 (1991)Google Scholar
  18. 18.
    R.E. Franklin, Proc. Roy Soc (London) A209, 196 (1951)Google Scholar
  19. 19.
    R. Yazami, personal communicationGoogle Scholar
  20. 20.
    N. Daumas and A. Herold, C. R. Acad. Sci. C 286, 373 (1969)Google Scholar
  21. 21.
    T. Zheng, Y. Liu, E.W. Fuller, S. Tseng, U. von Sacken and J.R. Dahn, J. Electrochem. Soc. 142, 2581 (1995)CrossRefGoogle Scholar
  22. 22.
    T. Zheng, J.S. Xue and J.R. Dahn, Chem. Mat. 8, 389 (1996)CrossRefGoogle Scholar
  23. 23.
    T.Zheng, W.R. McKinnon and J.R. Dahn, J. Electrochem. Soc. 143, 2137 (1996)CrossRefGoogle Scholar
  24. 24.
    N. P Yao, L.A. Heredy and R.C. Saunders, J. Electrochem. Soc. 118, 1039 (1971)Google Scholar
  25. 25.
    E.C. Gay, et al., J. Electrochem. Soc. 123, 1591 (1976)CrossRefGoogle Scholar
  26. 26.
    S.C. Lai, J. Electrochem. Soc. 123, 1196 (1976)CrossRefGoogle Scholar
  27. 27.
    R.A. Sharma and R.N. Seefurth, J. Electrochem Soc. 123, 1763 (1976)CrossRefGoogle Scholar
  28. 28.
    R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc. 124, 1207 (1977)CrossRefGoogle Scholar
  29. 29.
    H. Ogawa, Proceedings of 2nd International Meeting on Lithium Batteries, (Elsevier Sequoia) (1984), p. 259Google Scholar
  30. 30.
    J. Wang, P. King and R.A. Huggins, Solid State Ionics 20, 185 (1986)CrossRefGoogle Scholar
  31. 31.
    J. Wang, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 133, 457 (1986)CrossRefGoogle Scholar
  32. 32.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, J. Electrochem. Soc. 128, 725 (1981)CrossRefGoogle Scholar
  33. 33.
    B.A. Boukamp, G.C. Lesh and R.A. Huggins, in Proc. Symp. on Lithium Batteries, ed. by H.V. Venkatasetty, Electrochem. Soc. (1981), p. 467.Google Scholar
  34. 34.
    R.A. Huggins and B.A. Boukamp, US Patent 4,436,796Google Scholar
  35. 35.
    A. Anani, S. Crouch-Baker and R.A. Huggins, in Proc. Symp. on Lithium Batteries, ed. by A.N. Dey, Electrochem. Soc. (1987), p. 382Google Scholar
  36. 36.
    A. Anani, S. Crouch-Baker and R.A. Huggins, J. Electrochem. Soc. 135, 2103 (1988)CrossRefGoogle Scholar
  37. 37.
    C. J. Wen and R. A. Huggins, J. Solid State Chem. 35, 376 (1980)CrossRefGoogle Scholar
  38. 38.
    C.J. Wen and R.A. Huggins, J. Electrochem. Soc. 128, 1181 (1981)CrossRefGoogle Scholar
  39. 39.
    J. Yang, M. Winter, and J. O. Besenhard, Solid State Ionics 90, 281 (1996)CrossRefGoogle Scholar
  40. 40.
    R. A. Huggins and W. D. Nix, Ionics 6, 57 (2000)CrossRefGoogle Scholar
  41. 41.
    A. Timmons, PhD Dissertation, Dalhousie University (2007)Google Scholar
  42. 42.
    M. Fujimoto, S. Fujitani, M. Shima, et al., US Patent 7,195,842 (March 27, 2007)Google Scholar
  43. 43.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X. Feng Zhang, R.A. Huggins and Y. Cui, Nat. Nanotechnol. 3, 31 (2008)CrossRefGoogle Scholar
  44. 44.
    Y. Piffard, F. Leroux, D. Guyomard, J.-L. Mansot and M. Tournoux, J. Power Sources 68, 698 (1997)CrossRefGoogle Scholar
  45. 45.
    M. Nishijima, T. Kagohashi, N. Imanishi, Y. Takeda, O. Yamamoto and S. Kondo, Solid State Ionics 83, 107 (1996)CrossRefGoogle Scholar
  46. 46.
    T. Shodai, S. Okada, S-i. Tobishima, and J-i. Yamaki, Solid State Ionics 86–88, 785 (1996)CrossRefGoogle Scholar
  47. 47.
    M. Nishijima, T. Kagohashi, Y. Takeda, N. Imanishi and O. C, in 8th International Meeting on Lithium Batteries, (1996), p. 402Google Scholar
  48. 48.
    T. Shodai, S. Okada, S. Tobishima and J. Yamaki, in 8th International Meeting on Lithium Batteries, (1996), p. 404Google Scholar
  49. 49.
    P. Limthongkul, PhD Thesis, Mass. Inst. of Tech. (2002)Google Scholar
  50. 50.
    B. Klausnitzer, PhD Thesis, University of Ulm (2000)Google Scholar
  51. 51.
    A. Netz, PhD Thesis, University of Kiel (2001)Google Scholar
  52. 52.
    A. Netz, R.A. Huggins and W. Weppner, Presented at 11th International Meeting on Lithium Batteries, (2002). Abstract No. 47Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robert A. Huggins
    • 1
  1. 1.Department of Materials Science & EngineeringStanford UniversityStanfordUSA

Personalised recommendations