Advertisement

Global Warming pp 609-619 | Cite as

Chemical Characteristics and Source Reconciliation of Organic Aerosols in Algiers City Area

  • Noureddine Yassaa
  • Riad Ladji
  • Angelo Cecinato
  • Brahim Y. Meklati
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Aerosols affect environment at the local, regional, and global levels. At the local level, aerosols are now becoming recognized as a significant health problem, especially in regard to respiratory illnesses, including asthma (Dockery et al., 1993). At global scale, atmospheric aerosols influence climate in two main ways, referred to as direct forcing and indirect forcing (Charlson et al., 1992). In the direct forcing mechanism, aerosols reflect sunlight back to space, thus cooling the planet. The indirect effect involves aerosol particles acting as (additional) cloud condensation nuclei, spreading the cloud's liquid water over smaller droplets. This makes clouds more reflective and longer lasting.

Keywords

Polycyclic Aromatic Hydrocarbon Particulate Organic Matter Cloud Condensation Nucleus Waste Landfill Polycyclic Aromatic Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arey, J, Atkinson, R, Zielinska, B, McElroy, PA (1989) Diurnal concentrations of volatile polycyclic aromatic hydrocarbons and nitroarenes during a photochemical smog pollution episode in Glendora, California. Environmental Science and Technology 23: 321.CrossRefGoogle Scholar
  2. Bi, XH., Sheng, GY, Peng, PA, Chen, YJ, Zhang, ZQ, Fu, JM (2003) Distribution of particulate and vapor phase n-alkenes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmospheric Environment 37: 289.CrossRefGoogle Scholar
  3. Cecinato, A, Ciccioli, P, Brancaleoni, E, Zagari, M (1998) PAH and NPAH in urban atmosphere of Rome and Milan. Annali di Chimica 88: 369.Google Scholar
  4. Charlson, RJ, Schwartz, SE, Hales, JM, Cess, RD, Coakley, JA, Hansen, JE, Hoffman, DJ (1992) Climate forcing by anthropogenic aerosols. Science 255: 423.CrossRefGoogle Scholar
  5. Ciccioli, P, Cecinato, A, Brancaleoni, E, Frattoni, M, Zacchei, P, Miguel, AH, Vasconcellas, PC (1996) Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. Journal of Geophysical Research 101(19): 567.Google Scholar
  6. Cincinelli, A, Del Bubba, M, Martellini, T, Gambaro, A, Lepri, L (2007) Gas-particle concentration and distribution of n-alkenes and polycyclic aromatic hydrocarbons in the atmosphere of Prato, Italy Chemosphere 68: 472.Google Scholar
  7. Cincinelli, A, Mandorlo, S, Dickhut, RM, Lepri, L (2003) Particulate organic compounds in the atmosphere surrounding an industrialised area of Prato, Italy. Atmospheric Environment 37: 3125.CrossRefGoogle Scholar
  8. Dimashki, M, Harrad, S, Harrison, RM (2000) Measurements of nitro-PAH in the atmospheres of two cities. Atmospheric Environment 34: 2459.CrossRefGoogle Scholar
  9. Dockery, DW, Pope, CA, Xu, X, Spengler, JD, Ware, JH, Fay, ME, Ferris, BG, Speizer, FE (1993) An association between air pollution and mortality in six US cities. New England Journal of Medicine 329: 1753.CrossRefGoogle Scholar
  10. Guo, ZG, Sheng, LF, Feng, JL, Fang, M (2003) Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China. Atmospheric Environment 37: 1825.CrossRefGoogle Scholar
  11. Manoli, E, Kouras, A, Samara, C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56: 867.CrossRefGoogle Scholar
  12. Marino, F, Cecinato, A, Siskos, PA (2000) Nitro-PAH in ambient particulate matter in the atmosphere of Athens. Chemosphere 40: 533.CrossRefGoogle Scholar
  13. Rogge, WF, Mazurek, MA, Hildemann, LM, Cass, GR (1993) Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27: 1309.Google Scholar
  14. Scneider, E, Krenmayr, P, Varmuza, K (1990) Monatshefte fur Chemie 121: 393.CrossRefGoogle Scholar
  15. Sharma, DN, Sawant, AA, Uma, R, Cocker, DR (2003) Preliminary chemical characterization of particle-phase organic compounds in New Delhi, India. Atmosphric Environment 37: 4317.CrossRefGoogle Scholar
  16. Yassaa, N, Meklati, BY, Cecinato, A (2005) Organic pollutants in airborne particulates of Algiers city area. In Environmental Chemistry, Green Chemistry and Pollutants in Ecosystems, edited by. E. Lichtfouse, J. Schwarzbauer and D. Robert Editors. Springer-Verlag, Berlin, Germany, pp. 371.Google Scholar
  17. Zielinska, B, Arey, J, Atkinson, R, Winer, AM (1989) Atmospheric Environment 23: 223.CrossRefGoogle Scholar
  18. Warzecha L (1993) Chemica Analytica 38: 303.Google Scholar
  19. WHO (1987) Polynuclear aromatic hydrocarbons (PAH). In Air Quality Guidelines for Europe. WHO Regional Publications, European Series N°23. World Health Organization, Geneva, pp. 105–117.Google Scholar
  20. Wilson, NK, McCurdy, TR, Chuang, JC (1995) Concentrations and phase distributions of nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air. Atmospheric Environment 29: 2575.CrossRefGoogle Scholar
  21. Wortham, HM, Masclet, PA, Mouvier, G (1990) Nitro PAH formulation in atmosphere: gaseous and particulate phases. Analytical method, Analusis 18: 536.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Noureddine Yassaa
    • 1
  • Riad Ladji
    • 2
  • Angelo Cecinato
    • 3
  • Brahim Y. Meklati
    • 1
  1. 1.USTHBAlgiersAlgeria
  2. 2.Centre de Recherche Scientifique et Technique en Analyses Physico-ChimiquesAlgiersAlgeria
  3. 3.Istituto sull’Inquinamento Atmosferico-C.N.RRomeItaly

Personalised recommendations