Advertisement

Global Warming pp 295-305 | Cite as

Coal-Based Hydrogen Production with CO2 Capture in the Aspect of Clean Coal Technologies

  • Adam Smoliński
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Despite the predicted major role of crude oil, mainly in the transport sector, and the growing share of natural gas in power generation, as outlined in the forecast of energy use structure by 2030, coal remains the most important fuel for power generation. Being the most abundant and competitive, coal recoverable reserves could satisfy the world’s energy needs in the perspective of about 180 years at the current consumption levels (Energy Information Administration, 2006). At the same time the unstable oil prices as well as stronger environmental regulations regarding greenhouse emissions make the greatest economic powers search a new, price competitive, and environment-friendly energy carrier. According to the specialists in the short- and medium-term hydrogen is likely to become this desired energy carrier.

Keywords

Coal Sample Steam Gasification Integrate Gasification Combine Cycle Boudouard Reaction Energy Information Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bisio, A, Boots, S (1995) Energy Technology and the Environment. Vol. 3: New York: Wiley.Google Scholar
  2. Chiesa, P, Consonni, S, Kreutz, T, Wiliams, R (2005) Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions. International Journal of Hydrogen Energy 30: 747–767.CrossRefGoogle Scholar
  3. Collot, A (2005) Matching gasification technologies to coal properties. International Journal of Coal Geology 65: 191–212.Google Scholar
  4. Cox, AW (2004) Hydrogen from coals. Prospects and challenges. Energy World 321: 10–11.Google Scholar
  5. Gambini, M, Vellini M (2005) Comparative analysis of H2/O2 cycle power plants based on different hydrogen production systems from fossil fuels. International Journal of Hydrogen Energy 30: 593–604.CrossRefGoogle Scholar
  6. Göttlicher, G, Pruschek, R (1997) Comparison of CO2 removal systems for fossil – fuelled power plant processes. Energy Conversion and Management 38: 173–178.CrossRefGoogle Scholar
  7. Gray, D, Tomlinson, G (2002) Hydrogen from coal. Mitretek Technical Paper. MTR 2002-31.Google Scholar
  8. Hacker, V (2003) A novel process for stationary hydrogen production: the reformer sponge iron Cycle (RESC). Journal of Power Sources 118: 311–314.CrossRefGoogle Scholar
  9. Hacker, V, Fankhauser, R, Faleschini, G, Fuchs, H, Friedrich, K, Muhr, M, Kordeschet, K (2000) Hydrogen production by steam iron process. Journal of Power Sources 86: 531–535.CrossRefGoogle Scholar
  10. Hauserman, WB (1994) High yield hydrogen production by catalytic gasification of coal or biomass. International Journal of Hydrogen Energy 19: 413–419.CrossRefGoogle Scholar
  11. Kreutz, T, Williams, R, Consonnia, S, Chiesa, P (2005) Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B: Economic analysis. International Journal of Hydrogen Energy 30: 769–784.CrossRefGoogle Scholar
  12. Kuramoto, K, Fujimoto, S, Morita, A, Shibano, S, Suzuki, Y, Hatano, H, Lin, SY, Harada M, Takarada, T (2003) Repetitive carbonation-calcinationr of ca-based sorbents for efficient CO2 corption at elevated temperatures and pressures. Industrial and Engineering Chemistry Research 42: 975–981.CrossRefGoogle Scholar
  13. Lin, HY, Chen, YW, Li, Ch (2003) The mechanism of reduction of iron oxide by hydrogen. Thermochimica Acta 400: 61–67.CrossRefGoogle Scholar
  14. Lin, SY, Harada, M, Suzuki, Y, Hatano, H (2005a) Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING). Energy Conversion and Management 46: 869–880.CrossRefGoogle Scholar
  15. Lin, SY, Harada, M, Suzuki, Y, Hatano, H (2005b) CO2 separation during hydrocarbon gasification. Energy 30: 2186–2193.CrossRefGoogle Scholar
  16. Lin, SY, Suzuki, Y, Hatano, H, Harada, M (2002a) Developing an innovative method, HyPr-RING, to produce hydrogen from hydrocarbons. Energy Conversion and Management 43: 1283–1290.CrossRefGoogle Scholar
  17. Lin, S, Harada, M, Suzuki, Y, Hatano, H (2002b) Hydrogen production from coal by separating carbon dioxide during gasification. Fuel 81: 2079–2085.CrossRefGoogle Scholar
  18. Rosen, MA, Scott, DS (1998) Comparative efficiency assessments for a range of hydrogen production processes. International Journal of Hydrogen Energy 23: 653–659.CrossRefGoogle Scholar
  19. Mondal, K, Piotrowski, K, Dasgupta, D, Hippo, E, Wiltowski, T (2005) Hydrogen from coal in a single step. Industrial and Engineering Chemistry Research 44: 5508–5517.CrossRefGoogle Scholar
  20. Smoliński, A (2007) Design and construction of a laboratory scale fixed bed reactor installation for testing of coal reactivity in a gasification process. Mining and Environment 1: 49–58.Google Scholar
  21. Smoliński, A, Stańczyk, K (2006) Catalysts in hydrogen production from coal, catalysis for environment: depollution. Renewable Energy and Clean Fuels. Conference Proceedings 115–122.Google Scholar
  22. Stiegel, GJ, Ramezan, M (2006) Hydrogen from coal gasification: An economical pathway to a sustainable energy future. International Journal of Coal Geology 65: 173–190.Google Scholar
  23. Takenaka, S, Sou, VTD, Otsuka, K (2004a) Storage and supply of pure hydrogen from methane mediated by modified iron oxides. Energy and Fuels 18: 820–829.CrossRefGoogle Scholar
  24. Takenaka, S, Kaburagi, T, Yamada, C, Nomura, K, Otsuka, K (2004b) Storage and supply of hydrogen by means of the iron oxides modified with Mo and Rh species. Journal of Catalysis 228: 66–74.CrossRefGoogle Scholar
  25. Tzimas, E, Peteves, SD (2005) The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural gas technologies in Europe in the medium term. Energy 30: 2672–2689.CrossRefGoogle Scholar
  26. Urasaki, K, Tanimoto, N, Hayashi, T, Sekine, Y, Kikuchi, E, Matsukata, M (2005) Hydrogen production via steam-iron reaction using iron oxide modified with very small amount of palladium and zirconia. Applied Catalysis A. General 228: 143–148.CrossRefGoogle Scholar
  27. Yamashita, K, Barreto, L (2005) Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels. Energy 30: 2453–2473.CrossRefGoogle Scholar
  28. http://www.eia.doe.gov/oiaf/archive/ieo06/index.html (2008) International Energy Outlook, US, Department of Energy, Office of Integrated Analysis and Forecasting.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Adam Smoliński
    • 1
  1. 1.Central Mining InstituteKatowicePoland

Personalised recommendations