Skip to main content

A CMOS Vision System On-Chip with Multi-Core, Cellular Sensory-Processing Front-End

  • Chapter
  • First Online:
Cellular Nanoscale Sensory Wave Computing

Abstract

This chapter describes a vision-system-on-chip (VSoC) capable of doing: image acquisition, image processing through on-chip embedded structures, and generation of pertinent reaction commands at thousands frame-per-second rate. The chip employs a distributed processing architecture with a pre-processing stage consisting of an array of programmable sensory-processing cells, and a post-processing stage consisting of a digital microprocessor. The pre-processing stage operates as a retina-like sensor front-end. It performs parallel processing of the images captured by the sensors which are embedded together with the processors. This early processing serves to extract image features relevant to the intended tasks. The front-end incorporates also smart read-out structures which are conceived to transmit only these relevant features, thus precluding full gray-scale frames to be coded and transmitted. The chip is capable to close action–reaction loops based on the analysis of visual flow at rates above 1,000 F/s with power budget below 1 W peak. Also, the incorporation of processors close to the sensors enables signal-dependent, local adaptation of the sensor gains and hence high-dynamic range signal acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo AA, et al (2008) Xetal-II: A 107 GOPS, 600 mW massively parallel processor for video scene analysis. IEEE J Solid-State Circuits 43(1):192–201

    Article  Google Scholar 

  • AnaFocus Ltd., http://www.anafocus.com

  • Bernard T, et al (1993) A programmable artificial retina. IEEE J Solid State Circuits 28(7):789–797

    Article  Google Scholar 

  • Carmona R, et al (2003) A bio-inspired 2-layer mixed-signal mixed-signal flexible programmable chip for early vision. IEEE Transact Neural Networks 14(5):1313–1336

    Article  Google Scholar 

  • Chih-Chi Cheng et al (2008) iVisual: An intelligent visual sensor SoC with 2790fps CMOS image sensor and 205GOPS/W vision processor. IEEE Int Solid-State Circuits Conf Dig Tech Papers 306–307, San Francisco CA

    Google Scholar 

  • Chua LO, Roska T (2002) Cellular neural networks and visual computing. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Cognex Ltd., http://www.cognex.com/ProductsServices/InspectionSensors

  • Decker SJ, et al (1998) A 256 ×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output. IEEE J Solid State Circuits 33:2081–2091

    Article  Google Scholar 

  • Delbruck T, Lichsteiner P (2006) Freeing vision from frames. Neuromorphic Eng 3:3–4

    Google Scholar 

  • Devaraj G, et al (2008) Applying algorithms. Vis Syst Design 13(11):17–20; 85–87

    Google Scholar 

  • Duller A, et al (2003) Parallel processing -the picoChip way! Communicating process architectures – 2003. IOS Press, pp 125–138

    Google Scholar 

  • Eklund J, et al (1996) VLSI implementation of a focal plane image processor — a realization of the near-sensor image processing concept. IEEE Transact VLSI Syst 4(3):322–335

    Article  Google Scholar 

  • El Gamal A, Eltoukhy H (2005) CMOS image sensors. IEEE Circuits Devices Mag 6–20

    Google Scholar 

  • ENIAC working group (2007) Strategic research agenda, 2nd edn. European Technology Platform Initiative, November 2007*.

    Google Scholar 

  • Green WE, et al (2004) Flying insect-inspired vision for autonomous aerial robot maneuvers in near-earth environment. Proc IEEE Int Conf Robotics Automat 2347–2352, New Orleans LA, April-May

    Google Scholar 

  • International Technology Roadmap for Semiconductors (ITRS) (2007) Edition emerging research devices, http://www.itrs.net/Links/2007ITRS/Home2007.htm

  • Kapasi UJ, et al (2003) Programmable stream processors. IEEE Comput 36(8):54–62

    Google Scholar 

  • Keckler S, et al (2003) A wire-delay scalable microprocessor architecture for high performance systems. IEEE Int Solid-State Circuits Conf Dig Tech Papers 1:168–169

    Google Scholar 

  • Komuro T, et al (2003) A digital vision chip specialized for high-speed target tracking. IEEE Transact Electron Devices 50(1):191–199

    Article  MathSciNet  Google Scholar 

  • Kyo S, et al (2005) An integrated memory array processor architecture for embedded image recognition systems. Proc 32nd Int Symp Comput Arch (ISCA’05) 134–145

    Google Scholar 

  • Lindgren L, et al (2004) A multi-resolution 100-GOPS 4-Gpixels/s programmable smart vision sensor for multi-sense imaging. IEEE J Solid-State Circuits 40(6):1350–1359

    Article  Google Scholar 

  • Liñán G, et al (2004) A 1000FPS@128 × 128 vision processor with 8-bit digitized I/O. IEEE J Solid-State Circuits 39(7):1044–1055

    Article  Google Scholar 

  • Morris K (2008) A passel of processors: NVIDIA’s Tesla T10P blurs some lines. FPGA Structured ASIC J, June 2008 (on-line: http://www.fpgajournal.com/articles_2008/20080617_nvidia.htm)

  • Pham D, et al (2005) The design and implementation of a first-generation CELL processor. IEEE Int Solid-State Circuits Conf Dig Tech Papers 184–185

    Google Scholar 

  • Philipp RM, et al (2006) A 128 ×128 33 mW 30 frames/s single-chip stereo imager. IEEE Int Solid-State Circuits Conf (ISSCC 2005) Digest Tech Papers 2050–2059

    Google Scholar 

  • Rodríguez-Vázquez A, et al (2004) ACE16k: The third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs. IEEE Transact Circuits Syst-I 51(5):851–863

    Article  Google Scholar 

  • Roska T, Rodríguez-Vázquez A (2001) Towards the visual microprocessor. Wiley, Chichecter UK

    Google Scholar 

  • Russ JC (1992) The image processing handbook. CRC Press, Boca Raton

    Google Scholar 

  • Seiler L, et al (2008) Larrabee: A many-core x86 architecture for visual computing. ACM Transact Graphics 27(3)

    Google Scholar 

  • Vangal S, et al (2007) An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS. Int Solid-State Circuits Conf Dig Tech Papers 98–99

    Google Scholar 

  • Wentzlaff D, et al (2007) On chip interconnection architecture of the TILE processor. IEEE Micro 27(5):15–31

    Article  Google Scholar 

  • Yu Z, et al (2008) Architecture and evaluation of an asynchronous array of simple processors. J Signal Processing Syst 53(3):243–259

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge fruitful discussions with Dr. Ricardo Carmona, Dr. Gustavo Liñán, Dr. Akos Zarandy, and Dr. Piotr Dudek.

The work of Prof. Rodríguez-Vázquez has been partially supported by the Spanish project 2006-TIC-2352 and the PIMA program of the CICE/JA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Rodríguez-Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodríguez-Vázquez, A. et al. (2010). A CMOS Vision System On-Chip with Multi-Core, Cellular Sensory-Processing Front-End. In: Baatar, C., Porod, W., Roska, T. (eds) Cellular Nanoscale Sensory Wave Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1011-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1011-0_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1010-3

  • Online ISBN: 978-1-4419-1011-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics