Circuit Models of Nanoscale Devices

  • Árpád I. Csurgay
  • Wolfgang Porod


On the nanoscale, equivalent circuit models are not scale invariant. An ideal equivalent circuit can be a valid model of a device at the macro or even micro-scale, but it might not reveal even the qualitative properties of the same device during downscaling. We illustrate the consequences of downscaling to the nanoscale with an example, the nanoscale capacitor. The circuit models combine four groups of state variables: (1) classical mechanical, (2) classical electromagnetic, (3) quantum mechanical, and (4) quantum electromagnetic. In general, a quantum-classical equivalent circuit is combined from four coupled “subcircuits,” representing the classical mechanical dynamics of the nuclei, the classical dynamics of the electromagnetic field, the quantum wave-dynamics of the electrons, and the QFT dynamics of photons. The modeling procedure should determine the state-variables of the four subcircuits and their couplings.

Two examples illustrate the quantum-classical models. The first combines the mechanical dynamics of the nuclei with the quantum wave behavior of the electrons. The second illustrates an application of the nanocapacitor as a nonlinear infrared sensor.


Coulomb Force Equivalent Circuit Model Casimir Force Open Quantum System Coulomb Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amlani I., Orlov AO, Toth G, Bernstein GH, Lent CS, Snider GL (1999) Digital logic gate using quantum-dot cellular automata. Science 284:289–291CrossRefGoogle Scholar
  2. Capasso F, Munday JN, Iannuzzi D, Chan HB (2007) IEEE J Select Top Quantum Electr 13:400–414CrossRefGoogle Scholar
  3. Chan HB, Aksyuk VA, Kleiman RN, Bishop DJ, Capasso F (2001) Nonlinear micro-mechanical Casimir oscillator. Phys Rev Lett 87(21):211801–04CrossRefGoogle Scholar
  4. Csaba G, Csurgay AI, Porod W (2001) Computing architecture composed of next-neighbor-coupled optically pumped nanodevices. Int J Circuit Theory Appl 29: 73-91CrossRefGoogle Scholar
  5. Csurgay AI, Porod W, Lent CS (2000) Signal processing with near-neighbor-coupled time-varying quantum-dot arrays. IEEE Transact Circuits Syst I, 1212–1223Google Scholar
  6. Csurgay AI, Porod W, Rakos B (2003) signal processing by pulse-driven molecular arrays. Int J Circuit Theory Appl 31(1):55–66MATHCrossRefGoogle Scholar
  7. Csurgay AI, Porod W (2001) Equivalent circuit representation of Coulomb-coupled nanoscale devices: modelling, simulations and reliability. Int J Circuit Theory Appl 29(1):3–35CrossRefGoogle Scholar
  8. Csurgay AI, Porod W (2004) Surface plasmon waves in nanoelectronic circuits. Int J Circuit Theory Appl 32:339–361MATHCrossRefGoogle Scholar
  9. Esaki L (1958) New phenomenon in narrow germanium p–n junctions. Phys Rev 109:603–604CrossRefGoogle Scholar
  10. Feynman RP (1939) Forces in Molecules, Phys Rev 56:340–343MATHCrossRefGoogle Scholar
  11. Grabert H, Devoret MH (1992) Single electron tunneling—Coulomb blockade in nanostructures. NATO-ASI Series B-294. Plenum Press, New YorkGoogle Scholar
  12. Hellmann H (1937) Einführung in die Quantenchemie, F. Deuticke, LeipzigGoogle Scholar
  13. Helmholtz H (1853) Über einige Gesetze der Verteilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik 89(6):211–233Google Scholar
  14. Hoekstra J (2007) Toward a circuit theory for metallic single-electron tunneling devices. Int J Circuit Theory Appl 35(3):213–238CrossRefGoogle Scholar
  15. Jain RK, Wagner S, Olson DH (1978) Stable room-temperature light emission from metal–insulator–metal junctions. Appl Phys Lett 32(1):62–64CrossRefGoogle Scholar
  16. Lent CS, Kirkner DJ (1990) The quantum transmitting boundary method. J Appl Phys 67:6353–6359CrossRefGoogle Scholar
  17. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57CrossRefGoogle Scholar
  18. Likharev KL (1999) Single-electron devices and their applications. Proc IEEE 87(4):606–632CrossRefGoogle Scholar
  19. Maier SA et al. (2001) Plasmonics – a route to nanoscale optical devices, Advanced Materials, 13(19): 1501–1505CrossRefGoogle Scholar
  20. Matyi G (2004) Nanoantennas for uncooled, double-band, CMOS compatible, high-speed infrared sensors. Int J Circuit Theory Appl 32:425–430CrossRefGoogle Scholar
  21. Mayer HF (1926) Über das Ersatzschema der Verstärkerröhre. Telegraphen- und Fernsprech-Technik 15:335–337Google Scholar
  22. Norton EL (1926) Design of finite networks for uniform frequency characteristic. Technical Report TM26–0–1860, Bell LaboratoriesGoogle Scholar
  23. Porod W (2007) Nanoelectronic circuit architectures. Chapter 6 in: Goddard WA, Brenner DW, Lyshewski SE, Iafrate GJ (eds) Handbook of Nanoscience, Engineering, and Technology, CRC Press, Boca RatonGoogle Scholar
  24. Porod W, Csaba G, Csurgay AI (2003) The role of field coupling in nano-scale cellular nonlinear networks. Int J Neural Syst 13(6):387–395CrossRefGoogle Scholar
  25. Porod W, Lent CS, Bernstein GH, Orlov AO, Amlani I, Snider GL, Merz JL (1999) Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron 86(5):549–590CrossRefGoogle Scholar
  26. Sanchez A, Davis CF, Liu KC, Javan A (1978) The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J Appl Phys 49:155–163CrossRefGoogle Scholar
  27. Scanlan JO (1966) Analysis and synthesis of tunnel diode circuits. Wiley, LondonGoogle Scholar
  28. Snider GL, Orlov AO, Amlani I, Zuo X, Bernstein GH, Lent CS, Merz JL, Porod W (1999) Quantum-dot cellular automata: review and recent experiments (invited). J Appl Phys 85(8):4283–4285CrossRefGoogle Scholar
  29. Stone AJ (1997) The theory of intermolecular forces. Clarendon Press, OxfordGoogle Scholar
  30. Thévenin L (1883) Sur les conditions de sensibilité du pont de Wheatstone. Annales T’elégraphiques 10:225–234Google Scholar
  31. Thompson A Wasshuber C (2000) Design of single-electron systems through artificial evolution. Int J Circuit Theory Appl 28(6):585–599Google Scholar
  32. Toth G, Lent CS, Tougaw PD, Brazhnik Y, Weng W, Porod W, Liu RW, Huang Y-F (1996) Quantum cellular neural networks. Superlatt Microstruct 20:473–477CrossRefGoogle Scholar
  33. Tsui DC (1969) Observation of surface Plasmon excitation by tunneling electrons in GaAs-Pb tunnel junctions, Phys Rev Lett 22(7):293–295CrossRefGoogle Scholar
  34. Weisskopf VF (1970) Physics in the 20th century. Science 168:923–930CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Árpád I. Csurgay
    • 1
    • 2
  • Wolfgang Porod
    • 1
    • 2
  1. 1.Faculty of Information TechnologyPázmány Péter Catholic UniversityBudapestHungary
  2. 2.Center for Nano Science and TechnologyUniversity of Notre DameNotre DameUSA

Personalised recommendations