Nanoantenna Infrared Detectors

  • Jeffrey Bean
  • Badri Tiwari
  • Gergo Szakmány
  • Gary H. Bernstein
  • P. Fay
  • Wolfgang Porod


This project focuses on devices that can be used for detection of thermal or long-wave infrared radiation, which is a frequency range for which developing detectors is of special interest. Objects near 300 K, such as humans and animals, emit radiation most strongly in this range, and absorption is relatively low in the LWIR atmospheric window between 8 and 14 μm. These facts provide motivation to develop detectors for use in this frequency range that could be used for target detection, tracking, and navigation in autonomous vehicles. The devices discussed in this chapter, referred to as dipole antenna-coupled metal-oxide-metal diodes (ACMOMDs), feature a half-wavelength antenna that couples electromagnetic radiation to a metal-oxide-metal (MOM) diode, which acts as a nonlinear junction to rectify the signal. These detectors are patterned using electron beam lithography and fabricated with shadow evaporation metal deposition. Along with offering CMOS compatible fabrication, these detectors provide high-speed and frequency-selective detection without biasing, a small pixel footprint, and full functionality at room temperature without cooling. The detection characteristics can be tailored to provide for multi-spectral imaging in specific applications by modifying device geometries. This chapter gives a brief introduction to currently available infrared detectors, thereby providing a motivation for why ACMOMDs were chosen for this project. An overview of the metal-oxide metal diode is provided, detailing principles of operation and detection. The fabrication of ACMOMDs is described in detail, from bonding pad through device processes. Direct-current current–voltage characteristics of symmetrical and asymmetrical antenna diodes are presented. An experimental infrared test bench used for determining the detection characteristics of these detectors is detailed, along with the figures of merit which have been measured and calculated. The measured performance of fabricated ACMOMDs is presented, including responsivity, noise performance, signal-to-noise ratio, noise-equivalent power, and normalized detectivity. The response as a function of infrared input power, polarization dependence, and antenna-length dependence of these devices is also presented.


Incident Radiation Infrared Radiation Infrared Detector Electron Beam Lithography Dipole Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Rahman, M.R., Gonzalez, F.J., Boreman, G.D.: Antenna-Coupled Metal-Oxide-Metal Diodes for Dual-Band Detection at 92.5 GHz and 28 THz. Electron. Lett. 40, 116–118 (2004)Google Scholar
  2. Alda, J., Fumeaux, C., Gritz, M.A., et al.: Responsivity of Infrared Antenna-Coupled Microbolometers for Air-side and Substrate-side Illumination. Infrared Phys. Techn. 41, 1–9 (2000)CrossRefGoogle Scholar
  3. Allen, C., Arams, F., Wang, M., et al.: Infrared-to-Millimeter, Broadband, Solid State Bolometer Detectors. Appl. Optics 8, 813–817 (1969)Google Scholar
  4. Balanis, C.A.: Antenna Theory: Analysis and Design. John Wiley and Sons, Inc., Hoboken (2005)Google Scholar
  5. Bean, J.A., Tiwari, B., Bernstein, G.H., Fay, P., Porod, W.: Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes. J. Vac. Sci. Tech. B 27, 11–14 (2009)CrossRefGoogle Scholar
  6. Beerman, H.P.: The Pyroelectric Detector of Infrared Radiation. IEEE Trans. Electron Devices ED-16, 554 (1969)Google Scholar
  7. Bernstein, G.H., Hill, D.A., Wen-Ping, L.: New High-contrast Developers for Poly(methyl methacrylate) Resist. J. Appl. Phys. 71, 4066–4075 (1992)CrossRefGoogle Scholar
  8. Block, W.H., Gaddy, O.L.: Thin Metal Film Room-Temperature IR Bolometers with Nanosecond Response Time. IEEE J. Quantum Electron. QE-9, 1044–1053 (1973)Google Scholar
  9. Boreman, G.D., Dogariu, A., Christodoulou, C., et al.: Modulation Transfer Function of Antenna-coupled Infrared Detector Arrays. Appl. Opt. 35, 6110–6114 (1996)CrossRefGoogle Scholar
  10. Boreman, G.D., Fumeaux, C., Herrmann, W., et al.: Tunable Polarization Response of a Planar Asymmetric-Spiral Infrared Antenna. Opt. Lett. 23, 1912–1914 (1998)CrossRefGoogle Scholar
  11. Bradley, C.C., Edwards, G., Knight, D.J.E.: Absolute Measurement of Submillimetre and Far Infrared Laser Frequencies. Radio Electron. Eng. 42, 321–327 (1972)CrossRefGoogle Scholar
  12. Bramley, P., Clark, S.: A Quantitative Model for the Thermocouple Effect Using Statistical and Quantum Mechanics. AIP Conf. Proc. 684, 547–552 (2003)CrossRefGoogle Scholar
  13. Capper, P., Elliott, C.T.: Infrared Detectors and Emitters: Materials and Devices. Kluwer Academic, Norwell (2000)Google Scholar
  14. Chong, N., Ahmed, H.: Antenna-Coupled Polycrystalline Silicon Air-Bridge Thermal Detector for Mid-Infrared Radiation. Appl. Phys. Lett. 71, 1607–1609 (1997)CrossRefGoogle Scholar
  15. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)MathSciNetMATHCrossRefGoogle Scholar
  16. Chua, L.O., Yang, L.: Cellular Neural Networks: Applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)MathSciNetCrossRefGoogle Scholar
  17. Chua, L.O., Roska, T.: Cellular Neural Networks and Visual Computing. Cambridge Press, Cambridge (2002)CrossRefGoogle Scholar
  18. Codreanu, I., Fumeaux, C., Spencer, D.F., et al.: Microstrip Antenna-Coupled Infrared Detector. Electron. Lett. 35, 2166–2167 (1999)CrossRefGoogle Scholar
  19. Codreanu, I., Boreman, G.D.: Infrared Microstrip Dipole Antennas-FDTD Predictions Versus Experiment. Microw. Opt. Tech. Lett. 29, 381–383 (2001)CrossRefGoogle Scholar
  20. Codreanu, L., Gonzalez, F.J., Boreman, G.D.: Detection Mechanisms in Microstrip Dipole Antenna-Coupled Infrared Detectors. Infrared Phys. Techn. 44, 155–163 (2003)CrossRefGoogle Scholar
  21. Cohen-Solal, G., Riant, Y.: Epitaxial (CdHg)Te Infrared Photovoltaic Detectors. Appl. Phys. Lett. 19 436–438 (1971)CrossRefGoogle Scholar
  22. Coleman, B.L.: Propagation of Electromagnetic Disturbances Along a Thin Wire in a Horizontally Stratified Medium. Philosoph. Mag. 41, 276–288 (1950)MATHGoogle Scholar
  23. Corbeil, J.L., Lavrik, N.V., Rajic, S., et al.: “Self-leveling” Uncooled Microcantilever Thermal Detector. Appl. Phys. Lett. 81, 1306–1308 (2002)CrossRefGoogle Scholar
  24. Daneu, V., Sokoloff, D., Sanchez, A., et al.: Extension of Laser Harmonic-Frequency Mixing Techniques into the 9um Region with an Infrared Metal-Metal Point-Contact Diode. Appl. Phys. Lett. 15, 398–401 (1969)CrossRefGoogle Scholar
  25. Datskos, P.G., Lavrik, N.V., Rajic, S.: Performance of Uncooled Microcantilever Thermal Detectors. Rev. Sci. Instruments 75, 1134–1148 (2004)CrossRefGoogle Scholar
  26. Dereniak, E.L., Boreman, G.D.: Infrared Detectors and Systems. John Wiley & Sons, Inc., New York (1996)Google Scholar
  27. Diesing, D., Merschdorf, M., Thon, A., et al.: Identification of Multiphoton Induced Photocurrents in Metal-Insulator-Metal Junctions. Appl. Phys. B B78, 443–446, 2004CrossRefGoogle Scholar
  28. Dolan, G.J.: Offset Works for Lift-off Photoprocessing. Appl. Phys. Lett. 31, 337–339 (1977)CrossRefGoogle Scholar
  29. Esfandiari, P., Bernstein, G., Fay, P., et al.: Tunable Antenna-Coupled Metal-Oxide-Metal (MOM) Uncooled IR Detector. Proc. SPIE – Int. Soc. Opt. Eng. 5783, 470–482 (2005)Google Scholar
  30. Faris, S.M., Gustafson, T.K., Wiesner, J.C.: Detection of Optical and Infrared Radiation with DC-Biased Electron-Tunneling Metal-Barrier-Metal Diodes. IEEE J. Quantum Electron. QE-9, 737–745 (1973)Google Scholar
  31. Fastenau, J.M., Liu, W.K., Fang, X.M., et al.: Commercial Production of QWIP Wafers by Molecular Beam Epitaxy. Infrared Phys. Tech. 42, 407–415 (2001)CrossRefGoogle Scholar
  32. Fisher, J.C., Giaever, I.: Tunneling Through Thin Insulating Layers. J. Appl. Phys. 32, 172–177 (1961)CrossRefGoogle Scholar
  33. Fulton, T.A., Dolan, G.J.: Observation of Single-Electron Charging Effects in Small Tunnel Junctions. Phys. Rev. Lett. 59, 109–112 (1987)CrossRefGoogle Scholar
  34. Fulton, T.A., Gammel, P.L., Bishop, D.J., et al.: Observation of Combined Josephson and Charging Effects in Small Tunnel Junction Circuits. Phys. Rev. Lett. 63, 1307–1310 (1989)CrossRefGoogle Scholar
  35. Fumeaux, C., Herrmann, W., Kneubühl, F.K., et al.: Nanometer Thin-Film Ni-NiO-Ni Diodes for Detection and Mixing of 30 THz Radiation. Infrared Phys. Tech. 39, 123–183 (1998)CrossRefGoogle Scholar
  36. Fumeaux, C., Boreman, G., Herrmann, W., Kneubühl, F., Rothuizen, H.: Spatial impulse response of lithographic infrared antenna. Applied Optics 38, 37–46 (1999)CrossRefGoogle Scholar
  37. Fumeaux, C., Gritz, M.A., Codreanu, I., et al.: Measurement of the Resonant Lengths of Infrared Dipole Antennas. Infrared Phys. Tech. 41, 271–281 (2000)CrossRefGoogle Scholar
  38. Gallagher, D.L., Adrian, M.L.: Two-Dimensional Drift Velocities from the IMAGE EUV Plasmaspheric Imager. J. Atmos. Sol.-Terr. Phys. 69, 341–350 (2007)Google Scholar
  39. George, S.M., Ott, A.W., Klaus, J.W.: Surface Chemistry for Atomic Layer Growth. J. Phys. Chem. 100, 13121–13131 (1996)CrossRefGoogle Scholar
  40. Glass, A.M.: Investigation of the Electrical Properties of Sr1 − x ∕ Bax ∕ Nb2 ∕ O6 with Special Reference to Pyroelectric Detection. J. Appl. Phys. 40, 4699–4713 (1969)CrossRefGoogle Scholar
  41. Gloos, K., Koppinen, P.J., Pekola, J.P.: Properties of Native Ultrathin Aluminium Oxide Tunnel Barriers. J. Phys.: Condens. Matter 15, 1733–1746 (2003)Google Scholar
  42. Gonzalez, F.J., Boreman, G.D.: Comparison of Dipole, Bowtie, Spiral, and Log-periodic IR Antennas. Infrared Phys. Tech. 46, 418–428 (2005)CrossRefGoogle Scholar
  43. Green, S.I.: Point Contact M.O.M. Tunneling Detector Analysis. J. Appl. Phys. 42, 1166–1169 (1971)Google Scholar
  44. Gupta, H.M., Van Overstraeten, R.J.: Role of Trap States in the Insulator Region for MIM Characteristics. J. Appl. Phys. 46, 2675–2682 (1975)CrossRefGoogle Scholar
  45. Gustafson, T.K., Bridges, T.J.: Radiation of Difference Frequencies Produced by Mixing in Metal-Barrier-Metal Diodes. Appl. Phys. Lett. 25, 56–59 (1974)CrossRefGoogle Scholar
  46. Gustafson, T.K., Schmidt, R.V., Perucca, J.R.: Optical Detection in Thin-Film Metal-Oxide-Metal Diodes. Appl. Phys. Lett. 24, 620–622 1974.CrossRefGoogle Scholar
  47. Hasnain, G., Arjavalingam, G., Dienes, A., et al.: Dispersion of Picosecond Pulses on Microstrip Transmission Lines. Proc. SPIE – Int. Soc. for Opt. Eng. 439, 159–163 (1983)Google Scholar
  48. Hegyi, B., Csurgay, A., Porod, W.: Investigation of the Nonlinearity Properties of the DC I-V Characteristics of Metal-Insulator-Metal (MIM) Tunnel Diodes with Double-Layer Insulators. J. Comp. Electron. 6, 159–162 (2007)CrossRefGoogle Scholar
  49. Heiblum, M., Wang, S.Y., Gustafson, T.K., et al.: Edge-MOM Diode: An Integrated, Optical, Nonlinear Device. IEEE Trans. Electron Dev. ED-24, 1199 (1977)Google Scholar
  50. Heiblum, M., Shihyuan, W., Whinnery, J.R., et al.: Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies. IEEE J. Quant. Electron. QE-14, 159–169 (1978)Google Scholar
  51. Kadlec, J., Gundlach, K.H.: Dependence of the Barrier Height on Insulator Thickness in Al-(Al-oxide)-Al Sandwiches. Solid State Comm. 16, 621–623 (1975)CrossRefGoogle Scholar
  52. Kale, B.M.: Electron Tunneling Devices in Optics. Opt. Eng. 24, 267–274 (1985)Google Scholar
  53. Kovacs, G.T.A.: Bulk Micromachining of Silicon. Proc. IEEE 86, 1536–1551 (1998)CrossRefGoogle Scholar
  54. Kwok, S.P., Haddad, G.I., Lobov, G.: Metal-Oxide-Metal (M-O-M) Detector. J. Appl. Phys. 42, 554–563 (1971)CrossRefGoogle Scholar
  55. Lahiji, G.R., Wise, K.D.: A Batch-Fabricated Silicon Thermopile Infrared Detector. IEEE Trans. Electron Devices ED-29, 14–22 (1982)Google Scholar
  56. Lang, S.B., Rice, L.H., Shaw, S.A.: Pyroelectric Effect in Barium Titanate Ceramic. J. Appl. Phys. 40, 4335–4340 (1969)CrossRefGoogle Scholar
  57. Long, D.: Photovoltaic and Photoconductive Infrared Detectors. Opt. Infrared Detect. 101–147 (1977)Google Scholar
  58. Lord, S.D.: A New Software Tool for Computing Earth’s Atmospheric Transmission of Near- and Far-Infrared Radiation. NASA Tech. Memo. 103957 (1992)Google Scholar
  59. Matsukura, Y., Nishino, H., Tanaka, H., et al.: Quantum Well Infrared Photodetectors (QWIP) with Selectively Re-Grown N-GaAs Plugs. Proc. SPIE 4369, 481–488 (2001)CrossRefGoogle Scholar
  60. Mead, C.A.: Electron Transport Mechanisms in Thin Insulating Films. Phys. Rev. 128, 2088–2093 (1962)CrossRefGoogle Scholar
  61. Michaelson, H.B.: The Work Function of the Elements and its Periodicity. J. Appl. Phys. 48, 4729–4733 (1977)CrossRefGoogle Scholar
  62. Middlebrook, C.T., Zummo, G., Boreman, G.D.: Direct-Write Electron-Beam Lithography of an IR Antenna-Coupled Microbolometer Onto the Surface of a Hemispherical Lens. J. of Vac. Sci. & Tech. B 24, 2566–2569 (2006)CrossRefGoogle Scholar
  63. Miyamoto, S., Kawashima, S., Shionoya, S.: Photo-Induced Infrared Absorption in ZnSe Single Crystals. J. Phys. Soc. Japan 24, 1182 (1968)CrossRefGoogle Scholar
  64. Momida H, Hamada T, Ohno T: First-Principles study of Dielectric Properties of Amorphous High-k Materials. Jpn. J. Appl. Phys. 46, 3255–3260 (2007)CrossRefGoogle Scholar
  65. Nagae, M.: Response Time of Metal-Insulatator-Metal Tunnel Junctions to Step Input Voltage. Jpn. J. Appl. Phys. 12, 523–530 (1973)CrossRefGoogle Scholar
  66. Nelson, O.L., Anderson, D.E.: Potential Barrier Parameters in Thin-Film Al-Al2O3-Metal Diodes. J. Appl. Phys. 37, 77–82 (1966)CrossRefGoogle Scholar
  67. Noda, A., Miyamoto, T., Murakami, S., et al.: A Dielectric Bolometer Mode of Infrared Sensor Using a New Ba(Ti1 − x ∕ Snx ∕ O3) Thin Film with a High Temperature Coefficient of Dielectric Constant. Integr. Ferroelectr. 49, 305–314 (2002)CrossRefGoogle Scholar
  68. Northrop, R.B.: Introduction to Instrumentation and Measurements, Second Edition: Taylor & Francis, Boca Raton (2005)Google Scholar
  69. Nossek, J.A., Seiler, G., Roska, T., et al.: Cellular Neural Networks: Theory and Circuit Design. Int. J. Circuit Theory Appl. 20, 533–553 (1992)MATHCrossRefGoogle Scholar
  70. Orlov, A.O., Amlani, I., Kummamuru, R.K., et al.: Experimental Demonstration of Clocked Single-Electron Switching in Quantum-Dot Cellular Automata. Appl. Phys. Lett. 77, 295–297 (2000)CrossRefGoogle Scholar
  71. Ott, A.W., McCarley, K.C., Klaus, J.W., et al.: Atomic Layer Controlled Deposition of Al2O3 Films Using Binary Reaction Sequence Chemistry. App. Surface Sci. 107, 128–136 (1996)CrossRefGoogle Scholar
  72. Pierret, R.: Advanced Semiconductor Fundamentals 2nd Edition. Prentice Hall, Upper Saddle River (2002)Google Scholar
  73. Rakos, B.: Investigation of Metal-Oxide-Metal Structures for Optical Sensor Applications. Ph.D. Dissertation, University of Notre Dame, Notre Dame (2006)Google Scholar
  74. Richards, R.K., Hutchinson, D.P., Bennett, C.A.: Room-Temperature QWIP Detection at 10 um. Proc. SPIE – Int. Soc. Opt. Eng. 4820, 250–253 (2003)Google Scholar
  75. Rogalski, A.: Infrared Detectors. Gordon and Breach, Amsterdam (2000)Google Scholar
  76. Rutledge, D.B., Schwarz, S.E., Adams, A.T.: Infrared and Submillimetre Antennas. Infrared Phys. 18, 713–729 (1978)CrossRefGoogle Scholar
  77. Sakuma, E., Evenson, K.M.: Characteristics of Tungsten-Nickel Point Contact Diodes Used as Laser Harmonic-Generator Mixers. IEEE J. Quant. Electron, QE-10, 599–603 (1974)Google Scholar
  78. Sanchez, A., Davis, C.F., Jr., Liu, K.C., et al.: The MOM Tunneling Diode: Theoretical Estimate of its Performance at Microwave and Infrared Frequencies. J. Appl. Phys. 49, 5270–5277 (1978)CrossRefGoogle Scholar
  79. Schwarz, S.E., Ulrich, B.T.: Antenna-Coupled Infrared Detectors. J. Appl. Phys. 48, 1870–1873 (1977)CrossRefGoogle Scholar
  80. Simmons, J.G.: Electric Tunnel Effect Between Dissimilar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 34, 2581–2590 (1963)MATHCrossRefGoogle Scholar
  81. Small, J.G., Elchinger, G.M., Javan, A., et al.: AC Electron Tunneling at Infrared Frequencies: Thin Film M-O-M Diode Structure with Broad-band Characteristics. Appl. Phys. Lett. 24, 275–279 (1974)CrossRefGoogle Scholar
  82. Sokoloff, D.R., Sanchez, A., Osgod, R.M., et al.: Extension of Laser Harmonic-Frequency Mixing Into the 5-micrometer Regions. Appl. Phys. Lett. 17, 257–259 (1970)CrossRefGoogle Scholar
  83. Summers, C.J., Zwerdling, S.: Material Characterization and Ultimate Performance Calculations of Compensated n-Type Silicon Bolometer Detectors at Liquid-Helium Temperatures. IEEE Trans. Microw. Theory Tech. MTT-22, 1009–1013 (1974)Google Scholar
  84. Sun, Z.: Silicon-based Passives for Integrated Microwave and Infrared Applications. Ph.D. Dissertation, University of Notre Dame, Notre Dame (2006)Google Scholar
  85. Thon, A., Merschdorf, M., Pfeiffer, W., et al.: Photon-Assisted Tunneling Versus Tunneling of Excited Electrons in Metal-Insulator-Metal Junctions. Appl. Phys. A (Mater. Sci. Process.) A78:189–199, 2004.Google Scholar
  86. Tidrow, M.Z., Beck, W.A., Clark, W.W., et al.: Device Physics and Focal Plane Array Applications of QWIP and MCT. Proc. SPIE 3629, 100–113 (1999)CrossRefGoogle Scholar
  87. Tiwari, B., Bean, J.A., Szakmany, G., et al.: Controlled Etching and Regrowth of Tunnel Oxide for Antenna-Coupled MOM Diodes. Submitted to J. Vac. Sci. Tech. B (2009)Google Scholar
  88. Tucker, J.R., Millea, M.F.: Photon detection in nonlinear tunneling devices. Applied Phys. Lett. 33, 611–613 (1978)CrossRefGoogle Scholar
  89. Twu, B.I., Schwarz, S.E.: Mechanism and Properties of Point-Contact Metal-Insulator-Metal Diode Detectors at 10.6 micrometers. Appl. Phys. Lett. 25, 595–598 (1974)Google Scholar
  90. Vanbesien, K., De Visschere, P., Smet, P.F., et al.: Electrical Properties of Al2O3 Films for TFEL-Devices Made With Sol-Gel Technology. Thin Solid Films 514, 323–328 (2006)CrossRefGoogle Scholar
  91. Wang, S.Y., Izawa, T., Gustafson, T.K.: Coupling Characteristics of Thin-Film Metal-Oxide-Metal Diodes at 10.6 um. Appl. Phys. Lett. 27, 481–483 (1975)Google Scholar
  92. Wilke, I., Herrmann, W., Kneubuhl, F.K.: Integrated Nanostrip Dipole Antennas for Coherent 30 THz Infrared Radiation. Appl. Phys. B B58, 87–95 (1994)CrossRefGoogle Scholar
  93. Wilke, I., Oppliger, Y., Herrmann, W., et al.: Nanometer Thin-Film Ni-NiO-Ni Diodes for 30 THz Radiation. Appl. Phys. A A58, 329–341 (1994)CrossRefGoogle Scholar
  94. Yamashita O: Effect of Metal Electrode on Seebeck Coefficient of p- and n-type Si Thermoelectrics. J. Appl. Phys. 95, 178–183 (2004)CrossRefGoogle Scholar
  95. Yasuoka, Y., Sakurada, T., Siu, D.P., et al.: Resistance Dependence of Detected Signals of MOM diodes. J. Appl. Phys. 50, 5860–5864 (1979)CrossRefGoogle Scholar
  96. Yngvesson, S.: Microwave Semiconductor Devices. Kluwer Academic Publishers, Norwell (1991)CrossRefGoogle Scholar
  97. Cole K S (1972) Membranes, Ions and Impulses. University of California Press, BerkeleyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jeffrey Bean
    • 1
  • Badri Tiwari
    • 1
  • Gergo Szakmány
    • 1
  • Gary H. Bernstein
    • 1
  • P. Fay
    • 1
  • Wolfgang Porod
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations