Advertisement

Encapsulation of Carotenoids

  • Henelyta S. Ribeiro
  • Heike P. Schuchmann
  • Robert Engel
  • Elke Walz
  • Karlis Briviba
Chapter

Abstract

Carotenoids are natural pigments, which are synthesized by microorganisms and plants. More than 600 naturally occurring carotenoids have been found in the nature. The main sources of carotenoids are fruits, vegetables, leaves, peppers, and certain types of fishes, sea foods, and birds. Carotenoids may protect cells against photosensitization and work as light-absorbing pigments during photosynthesis. Some carotenoids may inhibit the destructive effect of reactive oxygen species. Due to the antioxidative properties of carotenoids, many investigations regarding their protective effects against cardiovascular diseases and certain types of cancers, as well as other degenerative illnesses, have been carried out in the last years (Briviba et al. 2004; Krinsky et al. 2004; Kirsh et al. 2006). A diet rich in carotenoids may also contribute to photoprotection against UV radiation (Stahl et al. 2006). In vitro studies have shown that carotenoids such as β-cryptoxanthin and lycopene stimulate bone formation and mineralization. The results may be related to prevention of osteoporosis (Kim et al. 2003; Yamaguchi and Uchiyama 2003; 2004; Yamaguchi et al. 2005).

Keywords

Droplet Size Whey Protein Whey Protein Isolate Droplet Size Distribution Membrane Emulsification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguilar FAP, Freudig B, Schuchmann HP (2004) Herstellen von Emulsionen in Hochdruck-homogenisatoren mit modifizierten Lochblenden. Chemie Ingenieur Technik 4:396–399CrossRefGoogle Scholar
  2. Aguilar FAP, Köhler K, Schubert H, Schuchmann HP (2008) Herstellen von Emulsionen in einfachen und modifizierten Lochblenden: Einfluss der Geometrie auf die Effizienz der Zerkleinerung und Folgen für die Maßstabsvergrößerung. Chemie Ingenieur Technik 80:607–613CrossRefGoogle Scholar
  3. Anantachoke N, Makha M, Raston CL, Reutrakul V, Smith NC, Saunders M (2006) Fine tuning the production of nanosized β-carotene particles using spinning disk processing. J Am Chem Soc 128:13847–13853CrossRefGoogle Scholar
  4. Auweter H, Haberkorn H, Hechmann W, Horn D, Lüddecke E, Rieger J, Weiss H (1999) Die supramolekulare Struktur ausgefällter, nanometergroβer β-Carotinpartikel. Angewandte Chemie 111:2325–2328CrossRefGoogle Scholar
  5. Auweter H, Bohn H, Lüddecke E, Hinz W, Runge F, Pfeiffer A-M (2006) Production of solid preparations of water-soluble, sparingly water-soluble or water-insoluble active compounds. US Patent 7,105,176 B2Google Scholar
  6. Ax K (2003) Emulsionen und Liposomen als Trägersysteme für Carotinoide. Doctoral dissertation, University of Karlsruhe. Shaker Verlag, GermanyGoogle Scholar
  7. Ax K, Lambrich U, Schubert H (2000) Zerkleinerung von Liposomen in mechanischen Homogenisierapparaten. Lebensmittelverfahrenstechnik 45:277–280Google Scholar
  8. Ax K, Schubert H, Briviba K, Rechkemmer G, Tevini M (2001) Oil-in-water emulsions as carriers of bioavailable carotenoids. In: PARTEC 2001, Nuremberg, 27–29 March 2001Google Scholar
  9. Ax K, Mayer-Miebach E, Link B, Schuchmann H, Schubert H (2003) Stability of lycopene in oil-in-water emulsions. Eng Life Sci 3:199–201CrossRefGoogle Scholar
  10. Barenholz Y, Diminsky D, Cohen R (2006) Carotenoid-loaded liposomes. US Patent 7,048,943 B2Google Scholar
  11. Bauernfeind JC, Smith EG, Bunnell RH (1958) Coloring fat-base foods with β-carotene. Food Technol 12:527–535Google Scholar
  12. Baumeister B, Matile S (2000) Rigid-rod β-barrels as lipocalin models: Probing confined space by carotenoid encapsulation. Chem Eur J 6:1739–1749Google Scholar
  13. Bertram JS, Pung A, Churley M, Kappock TJ, Wilkins LR, Cooney RV (1991) Diverse carotenoids protect against chemically induced neoplastic transformation. Carcinogenesis 12:671–678CrossRefGoogle Scholar
  14. Blanch GP, Castillo MLR, Caja MM, Pérez-Méndez M, Sánchez-Cortés S (2007) Stabilization of all-trans-lycopene from tomato by encapsulation using cyclodextrins. Food Chem 105:1335–1341CrossRefGoogle Scholar
  15. Bortlik K, Saucy F, Duruz E, Richelle M, Lambelet P, Baur M, Pfeifer AMA (2005) Primary composition comprising a lipophilic bioactive compound. US 2005/0106219 A1Google Scholar
  16. Briviba K, Schnäbele K, Schwertle E, Blockhaus M, Rechkemmer G (2001) β-Carotene inhibits growth of human colon carcinoma cells in vitro by induction of apoptosis. Biol Chem 382:1663–1668CrossRefGoogle Scholar
  17. Briviba K, Kulling SE, Möseneder J, Watzl B, Rechkemmer G, Bub A (2004) Effects of supplementing a low-carotenoid diet with a tomato extract for 2 weeks on endogenous levels of DNA single strand breaks and immune functions in healthy non-smokers and smokers. Carcinogenesis 25:2373–2378CrossRefGoogle Scholar
  18. Briviba K, Bornemann R, Lemmer U (2006) Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy. Mol Nutr Food Res 50:991–995CrossRefGoogle Scholar
  19. Buijsse B, Feskens EJM, Kwape L, Kok FJ, Kromhout D (2008) Both α- and β-carotene, but not tocopherols and vitamin C, are inversely related to 15-year cardiovascular mortality in dutch elderly men. J Nutr 138:344–350Google Scholar
  20. Bunnell RH, Driscoll W, Bauernfeind JC (1958) Coloring water-base foods with β-carotene. Food Technol 12:536–541Google Scholar
  21. Carle R, Schieber A, Mutter S (2004) Novel composition comprising carotenoids. WO 2004/066750 A1Google Scholar
  22. Castenmiller JJ, West CE (1998) Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 18:19–38CrossRefGoogle Scholar
  23. Cathrein E, Stein H, Stoller H, Viardot K (1991) Verfahren zur Herstellung von Carotinoidpräparaten. EP 0410236Google Scholar
  24. Chen, C.-C., Leuenberger, B., Zedi, E. (2004). Compositions containing fat-soluble substances in a carbohydrate matrix. EP 1 066 761 B1Google Scholar
  25. Chiu YT, Chiu CP, Chien JT, Ho GH, Yang J, Chen BH (2007) Encapsulation of lycopene extract from tomato pulp waste with gelatin and poly(γ-glutamic acid) as carrier. J Agric Food Chem 55:5123–5130CrossRefGoogle Scholar
  26. Christen WG, Liu S, Glynn RJ, Gaziano JM, Buring JE (2008) Dietary carotenoids, vitamins C and E, and risk of cararact in women – A prospective study. Arch Ophthalmol 126:102–109CrossRefGoogle Scholar
  27. Chu B-S, Ichikawa S, Kanafusa S, Nakajima M (2007) Preparation and characterization of β-carotene nanodispersions prepared by solvent displacement technique. J Agric Food Chem 55:6754–6760CrossRefGoogle Scholar
  28. Colombo VE, Gerber F (1991) Structures and properties of stabilized vitamin and carotenoid dry powders. Food Struct 10:161–170Google Scholar
  29. Cook EJ, Lagace AP (1985) Apparatus for forming emulsions. US Patent 4,533,254Google Scholar
  30. Cook EJ, Lagace AP (1990). Method of forming a microemulsion. US Patent 4,908,154Google Scholar
  31. de Pee S, West CE, Permaesih D, Martuti S, Hautvast JG (1998) Orange fruit is more effective than are dark-green, leafy vegetables in increasing serum concentrations of retinol and beta-carotene in schoolchildren in Indonesia. Am J Clin Nutr 68:1058–1067Google Scholar
  32. Desobry SA, Netto FM, Labuza TP (1997) Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J Food Sci 62:1158–1162CrossRefGoogle Scholar
  33. DIN 19738 (2004) Bodenbeschaffenheit – Resorptionsverfügbarkeit von organischen und anorganischen Schadstoffen aus kontaminiertem Bodenmaterial. Normenausschuss Wasserwesen (NAW) im DINGoogle Scholar
  34. Elizalde BE, Herrera MI, Buera MP (2002) Retention of β-carotene encapsulated in a trehalose-based matrix as affected by water content and sugar crystallization. J Food Sci 67:3039–3045CrossRefGoogle Scholar
  35. End L, Haber B, Schulte S, Obermüller-Jevic U (2007) Nanoformulations of health ingredients. In: PARTEC 2007, NurembergGoogle Scholar
  36. Engel R, Ribeiro HS, Briviba K, Rechkemmer G, Schuchmann HP, Schubert H (2005) Untersuchungen zur Formulierung von Carotinoiden und Phytosterolen in Mizellen zur Verbesserung der ernährungsphysiologischen Wirksamkeit. German Nutr Soc 7:82Google Scholar
  37. Engels T, Förster T, von Rybinski W (1995) The influence of coemulsifier type on the stability of oil-in-water emulsions. Colloids Surf A 99:141–149CrossRefGoogle Scholar
  38. Farhang B (2007) Nanotechnology and lipids. Lipid Technol 19:132–135CrossRefGoogle Scholar
  39. Feldthusen JJ, Auweter H, Habich A, Lüddecke E, Pfeiffer A-M (2005) Method for producing dry powders of one or several carotenoids. WO 2005/075385 A2Google Scholar
  40. Feldthusen JJ, Köpsel C, Schuchmann HP, Engel R, Ribeiro HS, Schubert H, Ax K (2007) Emulsifier system, emulsion and use thereof. BASF AG, Ludwigshafen, Germany. WO 2007/003599Google Scholar
  41. Flanagan J, Singh H (2006) Recent advances in the delivery of food-derived bioactives and drugs using microemulsions. In: Mozafari MR (ed) Nanocarrier technologies: Frontiers of nanotherapy. Springer, The NetherlandsGoogle Scholar
  42. Freudig, B. (2004). Herstellen von Emulsionen und Emulgieren von Milch in modifizierten Lochblenden. Doctoral dissertarion, University of Karlsruhe. Shaker Verlag, GermanyGoogle Scholar
  43. Garnett KM, Guerra-Santos LH, Gierhart DL (2003) Zeaxanthin formulatin for human ingestion. US Patent US2003108598A1Google Scholar
  44. Garti N, Aserin A (2007) Nanoscale liquid self-assembled dispersions in foods and the delivery of functional ingredients. In: McClements DJ (ed) Understanding and controlling the microstructure of complex foods. Woodhead Publishing, EnglandGoogle Scholar
  45. Garti N, Pinthus E, Aserin A, Spernath A (2007) Improved solubilisation and bioavailability of nutraceuticals in nanosized self-assembled liquid vehicles. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Blackwell, USA, pp 13–40Google Scholar
  46. Gärtner C, Stahl W, Sies H (1997) Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 66:116–122Google Scholar
  47. Grolier P, Azais-Braesco V, Zelmire L, Fessi H (1992) Incorporation of carotenoids in aqueous systems: uptake by cultured rat hepatocytes. Biophys Acta 1111:135–138CrossRefGoogle Scholar
  48. Hedges AR, Shieh WJ, Sikorski T (1995) Use of cyclodextrin for encapsulation in the use and treatment of food products. In: Risch SJ, Reineccius GA (eds) Encapsulation and controlled release of food ingredients. ACS Symposium Series 590, USAGoogle Scholar
  49. Henry LK, Catignani GL, Schwartz SJ (1998) Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene. J Am Oil Chem Soc 75:823–829CrossRefGoogle Scholar
  50. Hentschel A, Gramdorf S, Müller RH, Kurz T (2008) β-Carotene-loaded nanostructured lipid carriers. J Food Sci 73:N1–N6CrossRefGoogle Scholar
  51. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM, Argüelles-Monal W (2004) Microencapsulation of astaxanthin in a chitosan matrix. Carbohydr Polym 56:41–45CrossRefGoogle Scholar
  52. Hoppe PP, Scheneider JU, Schulz B, Tiefenbacher H (1986) Stabile injizierbare beta-Carotin-Solubilisate und Verfahren zu ihrer Herstellung. EP 0055817Google Scholar
  53. Horn D (1989) Preparation and characterization of microdisperse bioavailable carotenoid hydrosols. Die Angewandte Makromolekulare Chemie 166/167:139–153Google Scholar
  54. Horn D, Lüddecke E (1996) Preparation and characterization of nano-sized carotenoid hydrosols. In: Pelizzetti E (ed) Fine particles science and technology. Kluwer, The NetherlandsGoogle Scholar
  55. Horn D, Rieger J (2001) Organische Nanopartikel in wässriger Phase – Theorie, Experiment und Anwendung. Angewandte Chemie 113:4460–4492CrossRefGoogle Scholar
  56. Horn D, Schmidt H-W, Ditter W, Hartmann H, Lüddecke E (1985) Verfahren zur Herstellung von feinverteilten, pulverförmigen Carotinoid- bzw. Retinoidpräparaten. EP 0065193Google Scholar
  57. Horn D, Lüddecke E, Schäfer P (1988) Pulverförmige, wasserdispergiebare Carotinoid-Zubereitungen und Verfahren zu ihrer Herstellung. DE 3702030Google Scholar
  58. Hovestad W, Klinksiek B, Melchiors M (2000) Homogenenes Vermischen von wässrigen 2 K-Polyurethanlacken. Farbe Lack 7:40–44Google Scholar
  59. Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Am Oil Chem Soc 74:317–321CrossRefGoogle Scholar
  60. Kikuchi Y, Kikuchi HE, Kuboi Y, Nakajima M (2000) Micro- and nanotechnology for biomedical and environmental applications. Proc SPIE 3912:95–104CrossRefGoogle Scholar
  61. Kim L, Rao AV, Rao LG (2003) Lycopene II – Effect on osteoblasts: The carotenoid lycopene stimulates cell proliferation and alkaline phosphatise activity of SaOS-2 cells. J Med Food 6:79–86CrossRefGoogle Scholar
  62. Kirsh VA, Hayes RB, Mayne ST, Chatterjee N, Subar AF, Dixon LB, Albanes D, Andriole GL, Urban DA, Peters U (2006) Supplemental and dietary vitamin E, β-carotene, and vitamin C intakes and prostate cancer risk. J Natl Cancer Inst 98:245–254CrossRefGoogle Scholar
  63. Kittikaiwan P, Powthongsook S, Pavasant P, Shotipruk A (2007) Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohydr Polym 70:378–385CrossRefGoogle Scholar
  64. Kobayashi I, Nakajima M (2006) Generation and multiphase flow of emulsions in microchannels. In: Kockmann N (ed) Micro process engineering. Wiley-VCH Verlag, WeinheimGoogle Scholar
  65. Köhler K, Aguilar FA, Hensel A, Schubert K, Schuchmann HP (2007) Advanced optimisation of orifice-type high pressure emulsification valves. In PARTEC 2007, NurembergGoogle Scholar
  66. Köhler K, Kulozik U, Schuchmann HP, Karasch S (2008) Energiesparende Homogenisierung von Milch mit etablierten sowie neuartigen Verfahren. Chemie Ingenieur Technik 80:1107–1116CrossRefGoogle Scholar
  67. Kolb G (2001) Zur Emulsionsherstellung in Blendensystemen. Doctoral dissertation, Halle-Wittenberg UniversityGoogle Scholar
  68. Köpcke W, Krutmann J (2008) Protection from sunburn with β-carotene – A meta-analysis. Photochem Photobiol 84:284–288CrossRefGoogle Scholar
  69. Köpsel C (1999) Struktur von Carotinoidaggregaten. Doctoral dissertation, Heinrich-Heine-University DüsseldorfGoogle Scholar
  70. Krinsky NI, Mayne ST, Sies H (2004) Carotenoids in health and disease. Marcel Dekker, New YorkGoogle Scholar
  71. Laos K, Lõugas T, Mändmets A, Vokk R (2007) Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovat Food Sci Emerg Technol 8:395–398Google Scholar
  72. Lasic DD (1993) Liposomes: From physics to application. Elsevier, AmsterdamGoogle Scholar
  73. Leach G, Oliveira G, Morais R (1998) Production of a carotenoid-rich product by alginate entrapment and fluid-bed drying of Dunnaliella salina. J Sci Food Agric 76:298–302CrossRefGoogle Scholar
  74. Leuenberger BH (2007) Conceptual design of carotenoid product forms. In: Bröckel U, Meier W, Wagner G (eds) Product design and engineering, Vol. 2: Rawmaterials, additives and applications. Wiley-VCH Verlag, Weinheim, pp 539–567Google Scholar
  75. Leuenberger BH, Tritsch J-C, Ulm J (2006) Process for preparing beadlets containing fat-soluble substances. EP 1 074 592 B1Google Scholar
  76. Leuenberger BH, Schlegel B, Voelker KM (2008) Process for the manufacture of a powder containing carotenoids. WO 2008/098694 A1Google Scholar
  77. Loksuwan J (2007) Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloid 21:928–935CrossRefGoogle Scholar
  78. Lüddecke E, Schweikert L (1999) Finely dispersed carotenoid and retinoid suspension and their preparation. US 5,895,659Google Scholar
  79. Lüddecke E, Auweter H, Schweikert L (2004a) Use of carotenoid aggregates as colorants. US 6,827,941 B1Google Scholar
  80. Lüddecke E, Runge F, Auweter H (2004b) Herstellung und Charakterisierung von Carotinoid-Nanoteilchen. In: Product design and process engineering course. BASF AG, LudwigshafenGoogle Scholar
  81. Manz VU (1967) Die Anwendung und Bedeutung von synthetischen Carotinoiden in der Lebens- und Futtermittel- sowie in der pharmaceutischen Industrie. Chimie 21:329–335Google Scholar
  82. Matioli G, Rodriguez-Amaya DB (2003) Microencapsulation of lycopene with cyclodextrins. Ciência e Technologia de Alimentos 23:102–105Google Scholar
  83. Matsushita Y, Suzuki R, Nara E, Yokoyama A, Miyashita K (2000) Antioxidant activity of polar carotenoids including astaxanthin-β-glucoside from marine bacterium on PC liposomes. Fish Sci 66:980–985Google Scholar
  84. McClements DJ, Decker EA, Weiss J (2007) Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72:R109–R124CrossRefGoogle Scholar
  85. Mersmann A, Kind M, Stichlmair J (2005) Thermische Verfahrenstechnik Grundlagen und Methoden, Verein Deutscher Ingenieure-Buch.Google Scholar
  86. Minekus M (1998) Development and validation of a dynamic model of the gastrointestinal tract. Doctoral dissertation, University of UtrechtGoogle Scholar
  87. Montenegro MA, Nunes IL, Mercadante AZ, Borsarelli CD (2007) Photoprotection of vitamins in skimmed milk by an aqueous soluble lycopene-gum arabic microcapsule. J Agric Food Chem 55:323–329CrossRefGoogle Scholar
  88. Müller P, Tamm R (1966) Verfahren zur Herstellung eines insbesondere zum Färben von Lebens- und Futtermitteln geeigneten Carotinoidpräparates. DE1211911Google Scholar
  89. Neves MA, Ribeiro HS, Fujiu K, Nakajima M (2008a) Formulation of controlled size PUFA-loaded oil-in-water emulsions by microchannel emulsification using β-carotene rich palm oil. Ind Eng Chem Res 47:6405–6411CrossRefGoogle Scholar
  90. Neves MA, Ribeiro HS, Kobayashi I, Nakajima M (2008b) Encapsulation of lipophilic bioactive molecules by microchannel emulsification. Food Biophys 32:126–131CrossRefGoogle Scholar
  91. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72:R21–R32CrossRefGoogle Scholar
  92. Parker RS (1997) Bioavailability of carotenoids. Eur J Clin Nutr 51:86–90Google Scholar
  93. Paust J (1991) Recent progress in commercial retinoids and carotenoids. Pure Appl Chem 63:45–58CrossRefGoogle Scholar
  94. Paust J (1994) Herstellung und Anwendung von Carotinoiden. Chimia 48:494–498Google Scholar
  95. Phillips LG, Whitehead DM, Kinsella J (1994) Structure–function properties of food proteins. Academic, New YorkGoogle Scholar
  96. Porrini M, Riso P, Testolin G (1998) Absorption of lycopene from single or daily portions of raw and processed tomato. Br J Nutr 80:353–361CrossRefGoogle Scholar
  97. Reuscher H, Kagan DI, Madhavi DL (2004) Coated carotenoid cyclodextrin complexes. US Patent 2004/0109920 A1Google Scholar
  98. Ribeiro HS, Schubert H (2004) Lycopene enriched PIT emulsion. In: 3rd Euro fed lipid congress, ScotlandGoogle Scholar
  99. Ribeiro HS, Ax K, Schubert H (2003) Stability of lycopene emulsions in food systems. J Food Sci 68:2730–2734CrossRefGoogle Scholar
  100. Ribeiro HS, Briviba K, Rechkemmer G, Schubert H (2004) Zelluläre Aufnahme von flüssigen Lycopin-Formulierungen. German Nutr Soc 6:43Google Scholar
  101. Ribeiro HS, Cruz RCD, Schubert H (2005a) Biliquid foams containing carotenoids. Eng Life Sci 5:84–88CrossRefGoogle Scholar
  102. Ribeiro HS, Rico LG, Badolato GG, Schubert H (2005b) Production of O/W emulsions containing astaxanthin by repeated premix membrane emulsification. J Food Sci 70:E117–E123CrossRefGoogle Scholar
  103. Ribeiro HS, Chu BS, Nakajima M (2006a) Production of β-carotene-loaded O/W emulsions by microchannel emulsification. In: Congres Mondial de L’Emulsion (CME), FranceGoogle Scholar
  104. Ribeiro HS, Guerrero JMM, Briviba K, Rechkemmer G, Schuchmann H, Schubert H (2006b) Cellular uptake of carotenoid-loaded O/W emulsions in colon carcinoma cells in vitro. J Agric Food Chem 54:9366–9369CrossRefGoogle Scholar
  105. Ribeiro HS, Chu BS, Ichikawa S, Nakajima M (2008) Preparation of nanoemulsions containing β-carotene. Food Hydrocolloid 22:12–17CrossRefGoogle Scholar
  106. Richelle M, Bortlik K, Liardet S, Hager C, Lambelet P, Baur M, Applegate LA, Offord EAA (2002) Food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste. J Nutr 132:404–408Google Scholar
  107. Rodríguez-Huezo ME, Pedroza-Islas R, Prado-Barragán LA, Beristain CI, Vernon-Carter EJ (2004) Microencapsulation by spray drying of multiple emulsions containing carotenoids. J Food Sci 69:E351–E359CrossRefGoogle Scholar
  108. Runge F, Zwissler GK, End L, Schweikert L, Dieter H (1998) Verwendung von Carotinoid-Solubilisaten zum Färben von Lebensmitteln und pharmazeutischen Zubereitungen. DE 19653410 A1Google Scholar
  109. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2009) Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women: The Framingham Osteoporosis Study. Am J Clin Nutr 89:416–424CrossRefGoogle Scholar
  110. Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin – A review. Compr Rev Food Sci Food Saf 7:29–49CrossRefGoogle Scholar
  111. Sakaki K (1992) Solubility of β-carotene in dense carbon dioxide and nitrous oxide from 308 to 323 K and from 6 to 30 MPa. J Chem Eng Data 37:249–251CrossRefGoogle Scholar
  112. Santipanichwong R, Suphantharika M (2007) Carotenoids as colorants in reduced-fat mayonnaise containing spent brewer’s yeast β-glucan as a fat replacer. Food Hydrocolloid 21:565–574CrossRefGoogle Scholar
  113. Santos AB, Favaro-Trindade CS, Grosso CRF (2005) Preparation and characterization of paprika oleoresin microcapsules obtained by spray drying. Ciência e Tecnologia de Alimentos 25:322–326Google Scholar
  114. Scheid S, Buchholz M (2005) Nanomix – New developments in high-pressure homogenisation technology for cosmetics and pharmaceutics. In: 1st European congress on life science process technology, NurembergGoogle Scholar
  115. Schubert H (2005) Emulgiertechnik. Behrs Verlag, HamburgGoogle Scholar
  116. Schubert H, Engel R (2004) Product and formulation engineering of emulsions. Chem Eng Res Des 82:1137–1143CrossRefGoogle Scholar
  117. Schuchmann HP (2005) Emulsionen und Schäume. In: Schuchmann HP, Schuchmann H (eds) Lebensmittelverfahrenstechnik: Rohstoffe – Prozesse – Produkte. Wiley, Weinheim, pp 219–252Google Scholar
  118. Schuchmann HP (2007) Emulsification techniques for the formulation of emulsions and suspensions. In: Bröckel U, Meier W, Wagner G (eds) Product design and engineering, Vol. 1: Basics and technologies. Wiley, Weinheim, pp 63–93Google Scholar
  119. Schuchmann HP, Bub A, Schubert H, Mayer-Miebach E, Ribeiro HS (2005) Pflanzeninhaltsstoffe im Kampf gegen Krebs- und Herz-Kreislaufkrankheiten – Die Rolle der Verfahrenstechnik zur Verbesserung der Bioverfügbarkeit von Carotinoiden. Chemie Ingenieur Technik 77:1179–1180CrossRefGoogle Scholar
  120. Schwarz S, Obermüller-Jevic UC, Hellmis E, Koch W, Jacobi G, Biesalski H-K (2008) Lycopene inhibits disease progression in patients with benign prostate hyperplasia. J Nutr 138:49–53Google Scholar
  121. Schweikert L, Kolter K (1997) Stabile zur parenteralen Verabreichung geeignete Carotinoid-Emulsionen. EP 0 800 824 B1Google Scholar
  122. Senior JH (1987) Fate and behaviour of liposomes in vivo: A review of controlling factors. Crit Rev Ther Drug Carrier Syst 3:123–193Google Scholar
  123. Shahidi F, Han X-Q (1993) Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33:501–547CrossRefGoogle Scholar
  124. Shu B, Yu W, Zhao Y, Liu X (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76:664–669CrossRefGoogle Scholar
  125. Socaciu C, Jessel R, Diehl HA (2000) Competitive carotenoid and cholesterol incorporation into liposomes: effects on membrane phase transition, fluidity, poarity and anisotropy. Chem Phys Lipids 106:79–88CrossRefGoogle Scholar
  126. Stahl W, Heinrich U, Aust O, Tronnier H, Sies H (2006) Lycopene-rich products and dietary photoprotection. Photochem Photobiol Sci 5:238–242CrossRefGoogle Scholar
  127. Stang M (1998) Zerkleinern und Stabilisieren von Tropfen beim mechanischen Emulgieren. VDI Fortschrittsberichte, series 3, No. 527. VDI Verlag, DüsseldorfGoogle Scholar
  128. Stang M, Schuchmann HP, Schubert H (2001) Emulsification in high-pressure homogenizers. Eng Life Sci 4:151–157CrossRefGoogle Scholar
  129. Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–5566CrossRefGoogle Scholar
  130. Suzuki K, Shuto I, Hagura Y (1998) Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Sci Technol Int 42:164–167Google Scholar
  131. Türk M, Lietzow, R. (2004). Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution. AAPS PharmSciTech 5:1–10Google Scholar
  132. Upritchard JE, Schuurman CRWC, Wiersma A, Tijburg LBM, Coolen SAJ, Rijken PJ, Wiseman SA (2003) Spread supplemented with moderate doses of vitamin E and carotenoids reduces lipid peroxidation in healthy, nonsmoking adults. Am J Clin Nutr 78:985–992Google Scholar
  133. van het Hof KH, West CE, Weststrate JA, Hautvast JGAJ (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503–506Google Scholar
  134. Velikov K, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4:1964–1980CrossRefGoogle Scholar
  135. Vilstrup P, Jensen NM, Krag-Andersen S (1997) Process for the preparation of a water-dispersible carotenoid preparation in powder form. EP 0684973Google Scholar
  136. Vladisavljević GT, Williams RA (2005) Recent developments in manufacturing emulsions and particulate products using membranes. Adv Colloid Interface Sci 113:1–20CrossRefGoogle Scholar
  137. Vladisavljević GT, Williams RA (2006) Manufacture of large uniform droplets using rotating membrane emulsification. J Colloid Interf Sci 299:396–402CrossRefGoogle Scholar
  138. Vladisavljević G, Kobayashi I, Nakajima M (2006) Production of monodisperse O/W emulsions at high production scales using asymmetric microchannels. In: 7th Annual Meeting of the Japan Society for Food Engineering, Tsukuba, JapanGoogle Scholar
  139. Vrieling A, Voskuil DW, Bonfrer JM, Korse CM, van Doorn J, Cats A, Depla AC, Timmer R, Witteman BJ, van Leeuwen FE, van’t Veer LJ, Rookus MA, Kampman E (2007) Lycopene supplementation elevates circulating insulin-like growth factor-binding protein-1 and -2 concentrations in persons at greater risk of colorectal cancer. Am J Clin Nutr 86:1456–1462Google Scholar
  140. Winterhalter M, Lasic DD (1993) Liposome stability and formation: Experimental parameters and theories on the size distribution. Chem Phys Lipids 64:35–43CrossRefGoogle Scholar
  141. Yamaguchi M, Uchiyama S (2003) Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: The unique anabolic effect of β-cryptoxanthin. Biol Pharm Bull 43:281–296Google Scholar
  142. Yamaguchi M, Uchiyama S (2004) β-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol Cell Biochem 258:137–144CrossRefGoogle Scholar
  143. Yamaguchi M, Igarashi A, Morita S, Sumida T, Sugawara K (2005) Relationship between serum β-cryptoxanthin and circulating bone metabolic markers in healthy individuals with the intake of juice (Citrus unshiu) containing β-cryptoxanthin. J Health Sci 51:738–743CrossRefGoogle Scholar
  144. Yanagi K, Miyata Y, Kataura H (2006) Highly stabilized β-carotene in carbon nanotubes. Adv Mater 18:437–441CrossRefGoogle Scholar
  145. Yuan C, Jin Z, Xu X, Zhuang H, Shen W (2008) Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chem 109:264–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Henelyta S. Ribeiro
    • 1
  • Heike P. Schuchmann
    • 2
  • Robert Engel
    • 3
  • Elke Walz
    • 4
  • Karlis Briviba
    • 4
  1. 1.Unilever Discover, Colworth Science ParkSharnbrookUK
  2. 2.Institute of Process Engineering in Life SciencesUniversity of KarlsruheKarlsruheGermany
  3. 3.BASF SELudwigshafenGermany
  4. 4.Department of Food and Bio Process EngineeringMax Rubner-Institute (MRI), Federal Research Institute of Nutrition and FoodKarlsruheGermany

Personalised recommendations