Skip to main content

Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them

  • Chapter
  • First Online:
Encapsulation Technologies for Active Food Ingredients and Food Processing

Abstract

Encapsulation may be defined as a process to entrap one substance within another substance, thereby producing particles with diameters of a few nm to a few mm. The substance that is encapsulated may be called the core material, the active agent, fill, internal phase, or payload phase. The substance that is encapsulating may be called the coating, membrane, shell, carrier material, wall material, external phase, or matrix. The carrier material of encapsulates used in food products or processes should be food grade and able to form a barrier for the active agent and its surroundings. Please see Chap. 3 for more information on this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15

    Article  CAS  Google Scholar 

  • Appelqvist IAM, Golding M, Vreeker R, Zuidam NJ (2007) Emulsions as delivery systems in foods. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Blackwell Publishing, Ames, pp 41–81

    Chapter  Google Scholar 

  • Bakker MAE, Galema SA, Visser A (1999) Microcapsules of gelatin and carboxy methyl cellulose. Patent EP937496

    Google Scholar 

  • Barbé CJ, Kong L, Finnie KS, Calleja S, Hanna JV, Drabarek E, Cassidy DT, Blackford MG (2008) Sol-gel matrices for controlled release: from macro to nano using emulsion polymerization. J Sol-Gel Sci Technol 46(3):393–409

    Article  Google Scholar 

  • Barbosa-Cánovas GV, Ortega-Rivas E, Juliano P, Yan H (2005) Food Powders. Physical properties, processing, and functionality. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Bummer PM (2004) Physical chemical considerations of lipid-based oral drug delivery – solid lipid nanoparticles. Crit Rev Ther Drug Carrier Syst 21:1–20

    Article  CAS  Google Scholar 

  • Casana Giner V, Gimeno Sierra M, Gimeno Sierra B, Moser M (2006) Continuous multi-microencapsulation process for improving the stability and storage life of biologically active ingredients. Patent EP1702675

    Google Scholar 

  • Cellesi F, Tirelli N (2006) Sol-gel synthesis at neutral pH in w/o microemulsion: a method for enzyme nanoencapsulation in silica gel nanoparticles. Colloids Surf A Physicochem Eng Asp 288:52–61

    Article  CAS  Google Scholar 

  • Chen C-C, Wagner G (2004) Vitamin E nanoparticle for beverage applications. Chem Eng Res Des 82(A11):1432–1437

    Article  CAS  Google Scholar 

  • Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Drying Technol 23:1361–1394

    Article  CAS  Google Scholar 

  • Dewettinck K, Huyghebaert A (1999) Fluidized bed coating in food technology. Trends Food Sci Tech 10:163–168

    Article  CAS  Google Scholar 

  • De Wolf FA, Brett GM (2000) Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacol Rev 52(2):207–236

    Google Scholar 

  • Frost & Sullivan (2005). Opportunities in the Microencapsulated Food Ingredients Market. London. http://www.frost.com/prod/servlet/report-brochure.pag?id=B716-01-00-00-00

  • Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, Dumoulin E (2006) Encapsulation of oil in powder using spray drying and fluidized bed agglomeration. J Food Process Eng 75:27–35

    CAS  Google Scholar 

  • Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Intern 40:1107–1121

    Article  CAS  Google Scholar 

  • Garti N, Spernath A, Aserin A, Lutz R (2005) Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter 1:206–218

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Tech 15:330–347

    Article  CAS  Google Scholar 

  • Guichard E (2006) Flavour retention and release from protein solutions. Biotechnol Adv 24:226–229

    Article  CAS  Google Scholar 

  • Guignon B, Duquenoy A, Dumoulin ED (2002) Fluid bed encapsulation of particles: principles and practice. Drying Technol 20(2):419–447

    Article  CAS  Google Scholar 

  • Guzey D, McClements DJ (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci 128–130:227–248

    Article  Google Scholar 

  • Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    Article  CAS  Google Scholar 

  • Hsieh WC, Chang CP, Gao YL (2006) Controlled release properties of chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloids Surf B Biointerfaces 53:209–214

    Article  CAS  Google Scholar 

  • Hong MM, Oh JM, Choy JH (2008) Encapsulation of flavour molecules, 4-hydroxy-3-methoxy benzoic acid, into layered inorganic nanoparticles for controlled release of flavor. J Nanosci Nanotechnol 8:5018–5021

    Article  CAS  Google Scholar 

  • Huang Q, Jiang Y (2004) Enhancing the stability of phenolic antioxidants by nanoencapsulation. Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26

    Google Scholar 

  • Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Encapsulation efficiency of food flavours and oils during drying. Drying Technol 26:816–835

    Article  Google Scholar 

  • Kamiya T, Goto M, Shioashi Y, Noriki N (2006) Method for producing protein micelle structure having nano size to which hydrophobic substance is adsorbed and retained. Patent JP2006115751 A

    Google Scholar 

  • Kjaergaard OG (2001) Multiple-core encapsulation: Prilling. In: Vilstrup P (ed) Microencapsulation of Food Ingredients. Leatherhead Publishing, Surrey, pp 197–214

    Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13

    Article  CAS  Google Scholar 

  • Kosaraju SL, Tran C, Lawrence A (2006) Liposomal delivery systems for encapsulation of ferrous sulfate: preparation and characterization. J Liposome Res 16:347–358

    Article  CAS  Google Scholar 

  • Lalush I, Bar H, Zakaria I, Eichler S, Shimoni E (2005) Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic acid. Biomacromolecules 6:121–130

    Article  CAS  Google Scholar 

  • Lebail P, Buleon A, Shiftan D, Marchessault RH (2000) Mobility of lipid in complexes of amylose-fatty acids by deuterium and 13C solid state NMR. Carbohydr Polym 43(4):317–326

    Article  CAS  Google Scholar 

  • Lemetter CYG, Meeuse FM, Zuidam NJ (2009) Control of the morphology and size of complex coacervate microcapsules during scale up. AIChE Journal 55(6):1487–1496

    Article  CAS  Google Scholar 

  • Litster JD (2003) Scaleup of wet granulation processes: science not art. Powder Technol 130:34–40

    Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054403-1–054403-4

    Article  Google Scholar 

  • Mabille C, Leal-Calderon L, Bibette J, Schmitt V (2003) Monodisperse fragmentation in emulsions: Mechanisms and kinetics. Europhys Lett 61(5):708–714

    Article  CAS  Google Scholar 

  • Martin Del Valle EM, Galan MA (2005) Supercritical fluid technique for particle engineering: drug delivery applications. Rev Chem Eng 21(1):33–69

    Google Scholar 

  • McClements DJ (2005) Food Emulsions. Principles, practices and techniques. CRC Press, Boca Raton

    Google Scholar 

  • Mellema M, Van Benthum WAJ, Boer B, Von Harras J, Visser A (2006) Wax encapsulation of water-soluble compounds for application in foods. J Microencapsul 23(7):729–740

    Article  CAS  Google Scholar 

  • Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres ZE, Singh H (2006) Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric 86(13):2038–2045

    Article  CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  • Ortega-Rivas E (2005) Handling and processing of food powders and particulates. In: Onwulata C (ed) Encapsulated and powdered foods. CRC Press, Boca Raton, USA, pp 75–144

    Chapter  Google Scholar 

  • Porzio MA, Madsen MG (1997) Double encapsulation process and flavorant compositions prepared thereby. Patent WO1997013416

    Google Scholar 

  • Porzio M (2004) Flavor encapsulation: a convergence of science and art. Food Technology 58(7):40–47

    CAS  Google Scholar 

  • Prüsse U, Bilancetti L, Bucko M, Bugarski B, Bukowski J, Gemeiner P, Lewinska D, Manojlović V, Massart B, Nastruzzi C, Nedović V, Poncelet D, Siebenhaar S, Tobler L, Tosi A, Vikartovska A, Vorlop K-D (2008) Comparison of different technologies for the production of alginate microspheres. Chem Pap 62(4):364–374

    Article  Google Scholar 

  • Radtke M, Souto EB, Müller RH (2005) Nanostructured lipid carriers: a novel generation of solid lipid drug carriers. Pharmaceut Tech Eur 17(4):45–50

    CAS  Google Scholar 

  • Regiert M (2008) Molecular encapsulation in cyclodextrins. Speciality Chemicals Magazine, March, pp 22–24

    Google Scholar 

  • Reineccius GA (2001) Multiple-core encapsulation: The spray drying of food ingredients. In: Vilstrup P (ed) Microencapsulation of Food Ingredients. Leatherhead Publishing, Surrey, pp 151–185

    Google Scholar 

  • Reineccius GA (2004) The spray drying of food flavors. Drying Technol 22(6):1289–1324

    Article  Google Scholar 

  • Semo E, Kesselman E, Danino D, Livney YD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocolloids 21:936–942

    Article  CAS  Google Scholar 

  • Shefer A, Shefer SD (2003) Multi component controlled release system for oral care, food products, nutracetical, and beverages. Patent US20030152629

    Google Scholar 

  • Shimoni E, Lesmes U, Ungar Y (2007) Non-covalent complexes of bioactive agents with starch for oral delivery. Patents WO2007122624 and US 2006794110

    Google Scholar 

  • Sparks RE, Mason NS (1987) Method for coating particles or liquid droplets. Patent US4675140

    Google Scholar 

  • Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15:137–142

    Article  CAS  Google Scholar 

  • Tabor BE, Owers R, Janus JW (1992) The crosslinking of gelatin by a range of hardening agents. J Photographic Sci 40(5–6):205–211

    CAS  Google Scholar 

  • Takahashi M, Inafuku KI, Miyagi T, Oku H, Wada K, Imura T, Kitamoto D (2007) Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. J Oleo Sci 56(1):35–42

    CAS  Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    Article  CAS  Google Scholar 

  • Teunou E, Poncelet D (2002) Batch and continuous fluid bed coating – review and state of the art. J Food Eng 53:325–340

    Google Scholar 

  • Teunou E, Poncelet D (2005a) Fluid-bed coating. In: Onwulata C (ed) Encapsulated and powdered foods. CRC Press, Boca Raton, USA, pp 197–212

    Chapter  Google Scholar 

  • Teunou E, Poncelet D (2005b) Dry coating. In: Onwulata C (ed) Encapsulated and powdered foods. CRC Press, Boca Raton, USA, pp 179–195

    Chapter  Google Scholar 

  • Thies C, Ribeiro Dos Santas I, Richard J, Vandevelde V, Rolland H, Benoit J-P (2003) A supercritical fluid-based coating technology 1: Process considerations. J Microencapsul 20(1):87–96

    CAS  Google Scholar 

  • Thies C (2007) Microencapsulation of flavors by complex coacervation. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Blackwell Publishing, Ames, pp 149–170

    Chapter  Google Scholar 

  • Torchillin VP, Weissig V (2003) Liposomes, 2nd edn. Oxford University Press, A practical approach. Oxford

    Google Scholar 

  • Tromelin A, Andriot I, Guichard E (2006) Protein-flavour interactions. In: Voilley A, Etiévant P (eds) Flavour in Food. CRC Press, Boca Raton, USA

    Google Scholar 

  • Ubbink J, Krüger J (2006) Physical approaches for the delivery of active ingredients in foods. Trends Food Sci Technol 17:244–254

    Article  CAS  Google Scholar 

  • Uhlemann J, Schleifenbaum B, Bertram HJ (2002) Flavor encapsulation Technologies: an overview including recent developments. Perfumer & Flavorist 27:52–61

    CAS  Google Scholar 

  • Weinbreck FCJ, De Kruiff CG, Schrooyen P (2003) Complex coacervates containing whey proteins. Patents WO03106014 and EP1371410

    Google Scholar 

  • Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51(27):8073–8079

    Article  CAS  Google Scholar 

  • Yilmaz G, Jongboom ROJ, Feil H, Hennink WE (2001) Encapsulation of sunflower oil in starch matrices via extrusion: effect of the interfacial properties and processing conditions on the formation of dispersed phase morphologies. Carbohydr Polym 45:403–410

    Article  CAS  Google Scholar 

  • Yilmaz G, Jongboom ROJ, Van Dijk C (2005) Thermoplastic starch as a biodegradable matrix for encapsulation and controlled release. In: Mallapragada SK, Narasimhan B (eds) Handbook of Biodegradable Polymeric Materials and Their Applications: volume 2 Applications. American Scientific Publishers, Stevenson Ranch, pp 58–76

    Google Scholar 

  • Yilmaz G, Jongboom ROJ, Van Soest JJG, Feil H (1999) Effect of glycerol on the morphology of starch-sunflower oil composites. Carbohydr Polym 38:33–39

    Article  CAS  Google Scholar 

  • Yilmaz G (2003) Thermoplastic starch matrices for encapsulation and controlled release of volatile compounds. Ph.D. thesis, Utrecht University, The Netherlands

    Google Scholar 

  • Yu L, Banerjee IA, Gao X, Nuraje N, Matsui H (2005) Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjug Chem 16(6):1484–1487

    Article  CAS  Google Scholar 

  • Zasypkin D, Porzio M (2004) Glass encapsulation of aromas with chemically modified starch blends. J Microencapsul 21(4):385–397

    Article  CAS  Google Scholar 

  • Zhang J, Li X, Zhang D, Xiu Z (2007) Theoretical and experimental investigations on the size of alginate microspheres prepared by dropping and spraying. J Microencapsul 24(4):303–322

    Article  CAS  Google Scholar 

  • Zimit P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for w-3 polyunsaturated fatty acids. Food Hydrocolloids 23:1120–1126

    Article  Google Scholar 

  • Zuidam NJ, Van Winden E, De Vrueh R, Crommelin DJA (2003) Stability, storage and sterilization of liposomes. In: Torchilin VP, Weissig V (eds) liposomes. Oxford University Press, Oxford, pp 149–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaas Jan Zuidam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zuidam, N.J., Shimoni, E. (2010). Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. In: Zuidam, N., Nedovic, V. (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1008-0_2

Download citation

Publish with us

Policies and ethics