Skip to main content

Immobilization of Cells and Enzymes for Fermented Dairy or Meat Products

  • Chapter
  • First Online:

Abstract

Historically, we can find fermented products in almost all cultural backgrounds around the world. Notably, there are many different milk or meat-based foods and this chapter will focus on them (Kosikowski 1982; Wood 1998). Cheese, yoghurt, sour cream, kefir, or cultured butter are probably the most common fermented dairy products, but many regional varieties exist (Farnworth 2004). Fermented meats are typically found as dry sausages (Lüke 1998). Yeasts are mostly involved in the manufacture of bread and alcoholic beverages, which are basically cereal- or fruit-based products. In fermented meat and milk, the main microorganisms used are the lactic acid bacteria (LAB). Yeast and molds are rather involved in ripening. Therefore, the LAB will constitute the main focus of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari K, Mustapha A, Grün IU, Fernando L (2000) Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J Dairy Sci 83:1946–1951

    Article  CAS  Google Scholar 

  • Anjani K, Iyer C, Kailasapathy K (2004) Survival of co-encapsulated complementary probiotics and prebiotics in yoghurt. Milchwissenschaft 59:396–399

    CAS  Google Scholar 

  • Anjani K, Kailasapathy K, Phillips M (2007) Microencapsulation of enzymes for potential application in acceleration of cheese ripening. Int Dairy J 17:79–86

    Article  CAS  Google Scholar 

  • Anonymous (2003) Les enzymes déclenchent de nouveaux processus biologiques. Feeding Times 8:1–37

    Google Scholar 

  • Anprung P, Chengaengsatityaporn S, Thunpithayakui C (1989) Immobilized rennin for cheese making. Asian Food J 4:107–110

    CAS  Google Scholar 

  • Araya M, Morelli L, Reid G, Sanders ME, Stanton C, Pineiro M, Ben Embarek P (2002) Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London (ON, Canada)

    Google Scholar 

  • Azarnia S, Robert N, Lee B (2006) Biotechnological methods to accelerate cheddar cheese ripening. Crit Rev Biotechnol 26:121–143

    Article  CAS  Google Scholar 

  • Benchabane S, Vandenberg GW, Subirade M (2004) Optimization of the production of phytase microcapsules by spray drying. Aquac Assoc Canada 9:84–87

    Google Scholar 

  • Blom H, Hagen BF, Pedersen BO, Holck AL, Axelsson L, Naes H (1996) Accelerated production of dry fermented sausage. Meat Sci 43:S229–S242

    Article  Google Scholar 

  • Boots JW, Floris R (2006) Lactoperoxidase: From catalytic mechanism to practical applications. Int Dairy J 16:1272–1276

    Article  CAS  Google Scholar 

  • Bower CK, Daeschel MA (1999) Resistance responses of microorganisms in food environments. Int J Food Microbiol 50:33–44

    Article  CAS  Google Scholar 

  • Bower CK, Daeschel MA, McGuire J (1998) Protein antimicrobial barriers to bacterial adhesion. J Dairy Sci 81(10):2771–2778

    Article  CAS  Google Scholar 

  • Champagne CP (2006) Starter cultures biotechnology: The production of concentrated lactic cultures in alginate beads and their applications in the nutraceutical and food industries. Chem Ind Chem Eng Quarterly 12(1):11–17

    Article  CAS  Google Scholar 

  • Champagne CP, Morin N, Couture R, Gagnon C, Jelen P, Lacroix C (1992) The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Res Int 25(6):419–427

    Article  Google Scholar 

  • Champagne CP, Girard F, Rodrigue N (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium alginate beads. Int Dairy J 3(3):257–275

    Article  CAS  Google Scholar 

  • Champagne CP, Roy D, Gardner N (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45(1):61–84

    Article  CAS  Google Scholar 

  • Champagne CP, Gardner NJ, Lacroix C (2007) Fermentation technologies for the production of exopolysaccharide-synthesizing Lactobacillus rhamnosus concentrated cultures. Electron J Biotechnol 10(2) April 10. Found at: http://www.ejbiotechnology.info/content/vol10/issue2/full/10/

  • Cheetham PSJ (1988) Recent developments in enzyme technology as applied to foods and food processing. In: King RD, Cheetham PSJ (eds) Food biotechnology. Elsevier Applied Science, London, pp 117–171

    Google Scholar 

  • Cheryl M, Van Wyk PJ, Olson NF, Richardson T (1975) Continuous coagulation of milk using immobilized enzymes in a fluidized-bed reactor. Biotechnol Bioeng 17:585–598

    Article  Google Scholar 

  • De Valdez GF, De Giori GS, De Ruiz Holgado AP, Oliver G (1985) Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl Environ Microbiol 50:1339–1341

    Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    Article  CAS  Google Scholar 

  • Eie T, Larsen H, Sørheim O, Pettersen MK, Hansen AÅ, Wold JP, Naterstad K, Mielnik M (2007) New technologies for extending shelf life. Ital J Food Sci 19:127–152

    CAS  Google Scholar 

  • Farnworth ER (2004) The beneficial health effects of fermented foods – Potential probiotics around the world. J Nutraceuticals Funct Med Foods 4:93–117

    Google Scholar 

  • Fox PF (1993) Exogenous enzymes in dairy technology – a review. J Food Biochem 17:173–199

    Article  CAS  Google Scholar 

  • Gaudreau H, Champagne CP, Jelen P (2005) The use of crude cellular extracts of Lactobacillus delbrueckii ssp. bulgaricus 11842 to stimulate growth of a probiotic Lactobacillus rhamnosus culture in milk. Enzyme Microb Technol 36(1):83–90

    Article  CAS  Google Scholar 

  • Genari AN, Passos FV, Passos FML (2003) Configuration of a bioreactor for milk lactose hydrolysis. J Dairy Sci 86(9):2783–2789

    Article  CAS  Google Scholar 

  • Gobbetti M, Corsetti A, Smacchi E, Zocchetti A, De Angelis M (1998) Production of Crescenza cheese by incorporation of Bifidobacteria. J Dairy Sci 81:37–47

    Article  CAS  Google Scholar 

  • Goldberg BS, Chen RY (1989) Continuous cheese-making process utilizing an immobilized rennet enzyme reactor. US Patent 4(801):463

    Google Scholar 

  • Goulet J, Wozniak J (2002) Probiotic stability: A multifaceted reality. Innov Food Technol, February, 14–16

    Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    Article  CAS  Google Scholar 

  • Hammes WP, Hertel C (1998) New developments to meat starter cultures. Meat Sci 49:S125–S138

    Article  Google Scholar 

  • Hemantha-Kumar HR, Monteiro PV, Bhat GS, Ramachandra-Rao HG (2001) Effects of enzymatic modification of milk proteins on flavour and textural qualities of set yoghurt. J Sci Food Agric 81(1):42–45

    Article  Google Scholar 

  • Honda Y, Kako M, Abiko K, Sogo Y (1993) Hydrolysis of lactose in milk. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalysis. Marcel Dekker, New York, pp 209–234

    Google Scholar 

  • Hung MN, Xia Z, Lee BH (2001) Molecular and biochemcial analysis of two beta-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microbiol 67:4256–4263

    Article  CAS  Google Scholar 

  • Illanes A, Wilson L, Tomasello G (2000) Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme Microb Technol 27(3–5):270–278

    Article  CAS  Google Scholar 

  • Kailasapathy K (2006) Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci Technol 39(10):1221–1227

    Article  CAS  Google Scholar 

  • Kailasapathy K, Lam SH (2005) Application of encapsulated enzymes to accelerate cheese ripening. Int Dairy J 15:929–939

    Article  CAS  Google Scholar 

  • Kailasapathy K, Masondole L (2005) Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium and their effect on texture of feta cheese. Aust J Dairy Technol 60:252–258

    Google Scholar 

  • Kailasapathy K, Sultana K (2003) Survival and beta-D-galactosidase activity of encapsulated and free Lactobacillus acidophilus and Bifidobacterium lactis in ice cream. Aust J Dairy Technol 58:223–227

    CAS  Google Scholar 

  • Kailasapathy K, Anjani K, Seneweera S (2006) Recent trends in accelerated cheese ripening using microencapsulated enzymes. Aust J Dairy Technol 61(2):78–80

    CAS  Google Scholar 

  • Kearney L, Upton M, McLoughlin A (1990) Meat fermentations with immobilized lactic acid bacteria. Appl Microbiol Biotechnol 33:648–651

    Article  CAS  Google Scholar 

  • Kerry JP, O’Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci 74:113–130

    Article  Google Scholar 

  • Kheadr EE, Vuillemard JC, El Deeb SA (2000) Accelerated Cheddar cheese ripening with encapsulated proteinases. Int J Food Sci Technol 35:483–495

    Article  CAS  Google Scholar 

  • Kheadr EE, Vuillemard JC, El Deeb SA (2002) Acceleration of Cheddar cheese lipolysis by using liposome-entrapped lipases. J Food Sci 67(2):485–492

    Article  CAS  Google Scholar 

  • Kheadr EE, Vuillemard JC, El-Deeb SA (2003) Impact of liposome-encapsulated enzyme cocktails on Cheddar cheese ripening. Food Res Int 36:241–252

    Article  CAS  Google Scholar 

  • Kosikowski FV (1982) Cheese and fermented milk foods, 3rd edn. Brooktondale, New York, p 711

    Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13

    Article  CAS  Google Scholar 

  • Lamboley L, Lacroix C, Champagne CP, Vuillemard JC (1997) Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotechnol Bioeng 56:502–516

    Article  CAS  Google Scholar 

  • Lamboley L, Lacroix C, Sodini I, Lemay MJ, Champagne CP (2001) Influence of inoculum composition and low KCl supplementation on the biological and rheological stability of an immobilized cell system for mixed mesophilic lactic starter production. Biotechnol Prog 17:1071–1078

    Article  CAS  Google Scholar 

  • Lamboley L, St Gelais D, Champagne CP, Lamoureux M (2003) Growth and morphology of thermophilic dairy starters in alginate beads. J Gen Appl Microbiol 49:205–214

    Article  CAS  Google Scholar 

  • Lantto R, Puolanne E, Kruus K, Buchert J, Autio K (2007) Tyrosinase-aided protein cross-linking: Effects on gel formation of chicken breast myofibrils and texture an water-holding of chicken breast meat homogenate gels. J Agric Food Chem 55:1248–1255

    Article  CAS  Google Scholar 

  • Laroia S, Martin JH (1991) Effect of pH on survival of Bifidobacterium bifidum and Lactobacillus acidophilus in frozen fermented dairy desserts. Cult Dairy Prod J 26(4):13–24

    Google Scholar 

  • Law BA (1999) Technology of cheesemaking. Sheffield Academic Press – CRC Press, Sheffield, p 177

    Google Scholar 

  • Lee BH (1996) Fundamentals of food biotechnology. VCH Publishers, New York

    Google Scholar 

  • Lemay MJ, Champagne CP, Gariépy C, Saucier L (2002a) A comparison of the effect of meat formulation on the heat resistance of free or encapsulated cultures of Lactobacillus sakei. J Food Sci 67:3428–3434

    Article  CAS  Google Scholar 

  • Lemay MJ, Choquette J, Delaquis PJ, Gariépy C, Rodrigue N, Saucier L (2002b) Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int J Food Microbiol 78:217–226

    Article  CAS  Google Scholar 

  • Lüke FK (1998) Fermented sausages. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn. Blackie Academic & Professional, London, pp 441–483

    Google Scholar 

  • Macedo MG, Champagne CP, Vuillemard JC, Lacroix C (1999) Establishment of bacteriophages in an immobilized cells system used for continuous inoculation of lactococci. Int Dairy J 9:437–445

    Article  Google Scholar 

  • Magee EL Jr, Olson NF (1981) Microencapsulation of cheese ripening systems: Production of diacetyl and acetoin in cheese by encapsulated bacterial cell-free extract. J Dairy Sci 64:616–621

    Article  CAS  Google Scholar 

  • Mandal S, Puniya AK, Singh K (2006) Effect of alginate concentration on survival of micro­encapsulated Lactobacillus casei NCDC-298. Int Dairy J 16:1190–1195

    Article  CAS  Google Scholar 

  • McMaster LD, Kokott SA, Slatter P (2005) Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World J Microbiol Biotechnol 21:723–728

    Article  Google Scholar 

  • Modler HW, Villa-Garcia L (1993) The growth of Bifidobacterium longum in a whey-based medium and viability of this organism in frozen yogurt with low and high levels of developed acidity. Cult Dairy Prod J 28(1):4–8

    Google Scholar 

  • Morin N, Bernier-Cardou M, Champagne CP (1992) Production of Lactococcus lactis biomass by immobilized cell technology. J Ind Microbiol 9:131–135

    Article  Google Scholar 

  • Murthy K (2007) Bacteriophage treatment – a natural “on-farm” approach to improving food safety. Symposium on advances in antimicrobial interventions for quality control of meat and poultry products, Canadian Meat Council, Toronto, Canada, September 13–14

    Google Scholar 

  • Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111(2):164–169

    Article  CAS  Google Scholar 

  • Muthukumarasamy P, Holley RA (2007) Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiol 24(1):82–88

    Article  CAS  Google Scholar 

  • Muthukumarasamy P, Allan-Wojtas P, Holley RA (2006) Stability of Lactobacilus reuteri in different types of microcapsules. J Food Sci 71:M20–M24

    Article  CAS  Google Scholar 

  • Naes H, Holck AL, Axelsson L, Andersen HJ, Blom H (1994) Accelerated ripening of dry fermented sausage by addition of a Lactobacillus proteinase. Int J Food Sci Technol 29:651–659

    CAS  Google Scholar 

  • Norton S, Vuillemard S (1994) Food bioconversions and metabolite production using immobilized cell technology. Crit Rev Biotechnol 14(2):193–224

    Article  CAS  Google Scholar 

  • O’Reilly CE, O’Connor PM, Murphy PM, Kelly AL, Beresford TP (2002) Effects of high-pressure treatment on viability and autolysis of starter bacteria and proteolysis in Cheddar cheese. Int Dairy J 12:915–922

    Article  Google Scholar 

  • Panesar R, Panesar PS, Singh RS, Kennedy JF, Bera MB (2006) Production of lactase-hydrolyzing milk using ethanol permeabilized yeast cells. Food Chem 101:786–790

    Article  Google Scholar 

  • Pessela BCC, Mateo C, Fuentes M, Vian A, Garcia JL, Carrascosa AV, Guisan JM, Fernandez-Lafuente R (2003) The immobilization of a thermophilic beta-galactosidase on Sepabeads supports decreases product inhibition. Complete hydrolysis of lactose in dairy products. Enzyme Microb Technol 33(2–3):199–205

    Article  CAS  Google Scholar 

  • Prevost H, Divies C (1985) Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophillus entrapped in Ca-alginate. Biotechnol Lett 7:247–252

    Article  CAS  Google Scholar 

  • Prevost H, Divies C (1987) Fresh fermented cheese production with continuous pre-fermented milk by a mixed culture of mesophioic lactic streptococci entrapped in Ca-alginate. Biotechnol Lett 9:789–794

    Article  CAS  Google Scholar 

  • Prevost H, Divies C (1988a) Continuous pre-fermentation of milk by entrapped yoghurt bacteria. I. Development of the process. Milchwissenschaft 43:621–625

    Google Scholar 

  • Prevost H, Divies C (1988b) Continuous pre-fermentation of milk by entrapped yoghurt bacteria. II. Data for optimization of the process. Milchwissenschaft 43:716–719

    CAS  Google Scholar 

  • Reid AA, Vuillemard JC, Britten M, Arcand Y, Farnworth E, Champagne CP (2005) Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul 22:603–619

    Article  Google Scholar 

  • Roy I, Gupta MN (2003) Lactose hydrolysis by LactozymTM immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39(3):325–332

    Article  CAS  Google Scholar 

  • Saucier L, Champagne CP (2005) Cell immobilization technology and meat processing. In: Nedovic V, Willaert R (eds) Applications of cell immobilisation biotechnology, series “Focus on Biotechnology”, vol 8B. Springer–Kluwer, Dordrecht, pp 337–350

    Chapter  Google Scholar 

  • Shah NP, Ravula RR (2000) Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol 55:139–144

    Google Scholar 

  • Shah NP, Warnakulsuriya EV, Lankaputhra WEV (1997) Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. Int Dairy J 7:349–356

    Article  Google Scholar 

  • Shahidi F, Pegg PB (1991) Encapsulation of the pre-formed cooked cured-meat pigment. J Food Sci 56:2500–1504

    Google Scholar 

  • Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 54:557–561

    Article  Google Scholar 

  • Sheu TY, Marshall RT, Heymann H (1993) Improving survival of culture bacteria in frozen desserts by microentrapment. J Dairy Sci 76:1902–1907

    Article  CAS  Google Scholar 

  • Siso MIG, Freire MA, Ramil E, Belmonte ER (1994) Covalent immobilization of beta-galactosidase on corn grits. Process Biochem 29:7–12

    Article  CAS  Google Scholar 

  • Steenson LR, Klaenhammer TR, Swaisgood HE (1987) Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. J Dairy Sci 70:1121–1127

    Article  CAS  Google Scholar 

  • Talwalkar A, Kailasapathy K (2003) Effect of microencapsulation on oxygen toxicity in probiotic bacteria. Aust J Dairy Technol 58:36–39

    Google Scholar 

  • Talwalkar A, Kailasapathy K (2004) A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Compr Rev Food Sci Food Saf 3:117–124

    Article  CAS  Google Scholar 

  • Toren JF (2007) Composition and method for tenderizing meat. US Patent 7250184

    Google Scholar 

  • Tseng T-F, Tsai C-M, Yang J-H, Chen M-T (2006) Porcine blood plasma tansglutaminase combined with thrombin and fibrinogen as a binder in restructured meat. Asian-Australas J Anim Sci 19:1054–1058

    CAS  Google Scholar 

  • Työppönen S, Petäjä E, Mattila-Sandholm T (2003) Bioprotectives and probiotics for dry sausages. Int J Food Microbiol 83:233–244

    Article  Google Scholar 

  • Venugopal V (1994) Production of fish protein hydrolyzates by microorganisms. In: Martin AM (ed) Fisheries processing: Biotechnological applications. Chapman & Hall, London, pp 223–243

    Google Scholar 

  • Wood BJB (1998) Microbiology of fermented foods, 2nd edn. Blackie Academic and Professional, London

    Google Scholar 

  • You-Jin J, Vasanthan T, Temelli F, Song G-K (2003) The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavour encapsulation. Food Res Int 36:349–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude P. Champagne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Champagne, C.P., Lee, B.H., Saucier, L. (2010). Immobilization of Cells and Enzymes for Fermented Dairy or Meat Products. In: Zuidam, N., Nedovic, V. (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1008-0_13

Download citation

Publish with us

Policies and ethics