Time-Dependent Statistical Mechanics

Part of the Surveys and Tutorials in the Applied Mathematical Sciences book series (STAMS, volume 1)


We now turn to the statistical mechanics of systems not in equilibrium. The first few sections are devoted to special cases, which will be used to build up experience with the questions one can reasonably ask and the kinds of answer one may expect. A general formalism will follow, with applications.


Initial Data Memory Term Langevin Equation Liouville Equation Hermite Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Alder and T. Wainwright, Decay of the velocity correlation function, Phys. Rev. A 1 (1970), pp. 1–12.CrossRefGoogle Scholar
  2. [2]
    R. Balescu, Statistical Dynamics, Matter out of Equilibrium, Imperial College Press, London, 1997.MATHGoogle Scholar
  3. [3]
    S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943), pp. 1–88; reprinted in N. Wax, Selected Papers on Noise and Stochastic Processes, Dover, New York, 1954.CrossRefGoogle Scholar
  4. [4]
    A.J. Chorin, O.H. Hald, and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 2968–2973.CrossRefMathSciNetGoogle Scholar
  5. [5]
    A.J. Chorin, O.H. Hald, and R. Kupferman, Optimal prediction with memory, Physica D, 166 (2002), pp. 239–257.CrossRefMathSciNetGoogle Scholar
  6. [6]
    A.J. Chorin and P. Stinis, Problem reduction, renormalization, and memory, Comm. Appl. Math. Comp. Sci. 1 (2005), pp. 1–27.Google Scholar
  7. [7]
    W. E. andB. Engquist, The heterogeneous multiscale methods, Comm. Math. Sci. 1 (2003), pp. 87–133.MathSciNetGoogle Scholar
  8. [8]
    D. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic, New York, 1990.MATHGoogle Scholar
  9. [9]
    G. Ford, M. Kac, and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J. Math. Phys. 6 (1965), pp. 504–515.CrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Givon, R. Kupferman, and A. Stuart, Extracting macroscopic dynamics, model problems and algorithms, Nonlinearity 17 (2004), pp. R55–R127.CrossRefMathSciNetGoogle Scholar
  11. [11]
    S. Goldstein, On diffusion by discontinuous movements and on the telegraph equation, Q. J. Mech. Appl. Math. 4 (1951), pp. 129–156.CrossRefGoogle Scholar
  12. [12]
    O.H. Hald and P. Stinis, Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions, Proc. Natl. Acad. Sci. USA 104 (2007), pp. 6527–6532.CrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Hohenberg and B. Halperin, Theory of dynamical critical phenomena, Rev. Mod. Phys. 49 (1977) pp. 435–479.CrossRefGoogle Scholar
  14. [14]
    I. Horenko and C. Schutte, Likelihood-based estimation of multidimensional Langevin models and its application to biomolecular dynamics, Multiscale Model. Simul. 7 (2008), pp. 731–773.CrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Kac, A stochastic model related to the telegrapher's equation, Rocky Mountain J. Math. 4 (1974), pp. 497–509.Google Scholar
  16. [16]
    S.S. Ma, Modern Theory of Critical Phenomena, Benjamin, Boston, 1976.Google Scholar
  17. [17]
    A. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, 2006.Google Scholar
  18. [18]
    A. Majda, I. Timofeyev, and E. Vanden-Eijnden, A mathematical framework for stochastic climate models, Commun. Pure Appl. Math. 54 (2001), pp. 891–947.CrossRefMathSciNetGoogle Scholar
  19. [19]
    G. Papanicolaou, Introduction to the asymptotic analysis of stochastic equations, in Modern Modeling of Continuum Phenomena, R. DiPrima (ed.), Providence RI, 1974.Google Scholar
  20. [20]
    C. Schutte, J. Walters, C. Hartmann, and W. Huisinga, An averaging principle for fast degrees of freedom exhibiting long-term correlations, Multiscale Model. Simul. 2 (2004), pp. 501–526.CrossRefGoogle Scholar
  21. [21]
    P. Stinis, Stochastic optimal prediction for the Kuramoto-Sivashinksi equation, Multiscale Model. Simul. 2 (2004), pp. 580–612.CrossRefMathSciNetGoogle Scholar
  22. [22]
    K. Theodoropoulos, Y.H. Qian and I. Kevrekidis, Coarse stability and bifurcation analysis using timesteppers: a reaction diffusion example, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 9840–9843.CrossRefGoogle Scholar
  23. [23]
    R. Zwanzig, Problems in nonlinear transport theory, in Systems Far from Equilibrium, L. Garrido (ed.), Springer-Verlag, New York, 1980.Google Scholar
  24. [24]
    R. Zwanzig, Nonlinear generalized Langevin equations, J. Statist. Phys. 9 (1973), pp. 423–450.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Californian at BerkeleyBerkeleyUSA

Personalised recommendations