A Subdivision Method for Arrangement Computation of Semi-Algebraic Curves

  • Bernard Mourrain
  • Julien Wintz
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 151)


This chapter covers the use of subdivision methods in algebraic geom- etry with an emphasis on intersection, self-intersection, and arrangement computation, for the case of semi-algebraic curves with either implicit or parametric representation. Special care is given to the genericity of the subdivision, which can be specified whatever the context is, and then specialized to meet the algorithm requirements.


Symbolic-numeric computation topology intersection arrangement polynomial solvers mathematical software 

AMS(MOS) subject classifications

68W30 65D17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Agarwal and M. Sharir, Arrangements and their applications, Handbook of Computational Geometry (J. Sack, ed.) (2000), pp. 49–119.Google Scholar
  2. [2]
    L. Alberti, G. Comte, and B. Mourrain, Meshing implicit algebraic surfaces: the smooth case, in Mathematical Methods for Curves and Surfaces: Tromso'04, L.S.M. Maehlen, K. Morken, ed., Nashboro, 2005, pp. 11–26.Google Scholar
  3. [3]
    L. Alberti and B. Mourrain, Visualisation of implicit algebraic curves, in Pacific Graphics, M. Alexa, S. Gortler, and T. Ju, eds., Lahaina, Maui, Hawai, USA, 2007, IEEE Computer Society, pp. 303–312.Google Scholar
  4. [4]
    J.L. Bentley and T.A. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput., C-28 (1979), pp. 643–647.Google Scholar
  5. [5]
    E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn, and R. Wein, Sweeping and maintaining two-dimensional arrangements on surfaces: A first step, in ESA, 2007, pp. 645–656.Google Scholar
  6. [6]
    J.-D. Boissonnat and M. Yvinec, Algorithmic geometry, Cambridge University Press, New York, NY, USA, 1998.MATHGoogle Scholar
  7. [7]
    A. Bowyer, J. Berchtold, D. Eisenthal, I. Voiculescu, and K. Wise, Interval methods in geometric modeling, Geometric Modeling and Processing (2000), pp. 321–327.Google Scholar
  8. [8]
    A. Eigenwillig and M. Kerber, Exact and efficient 2d-arrangements of arbitrary algebraic curves, in Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, accepted for publication, 2008.Google Scholar
  9. [9]
    G. Elber and M.S. Kim, Geometric constraint solver using multivariate rational spline functions, in Proceedings of the sixth ACM Symposium on Solid Modelling and Applications, ACM Press, 2001, pp. 1–10.Google Scholar
  10. [10]
    G. Farin, Curves and surfaces for computer aided geometric design: a practical guide, Comp. Science and Sci. Computing, Acad. Press, 1990.Google Scholar
  11. [11]
    E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, and N. Wolpert, Arrangements, in Effective Computational Geometry for Curves and Surfaces, J.-D. Boissonnat and M. Teillaud, eds., Springer-Verlag, Mathematics and Visualization, 2006, pp. 1–66.Google Scholar
  12. [12]
    E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable object-oriented software, Addison-Wesley Professional, 1995.Google Scholar
  13. [13]
    J. Garloff and A.P. Smith, Investigation of a subdivision based algorithm for solving systems of polynomial equations, in Proceedings of the Third World Congress of Nonlinear Analysts, Part 1 (Catania, 2000), Vol. 47, 2001, pp. 167–178.Google Scholar
  14. [14]
    D. Halperin, Arrangements, in Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke, eds., CRC Press LLC, Boca Raton, FL, 2004, ch. 24, pp. 529–562.Google Scholar
  15. [15]
    Y. Hijazi and T. Breuel, Computing arrangements using subdivision and interval arithmetic, in Proceedings of the Sixth International Conference on Curves and Surfaces Avignon, 2006, pp. 173–182.Google Scholar
  16. [16]
    S. Joon-Kyung, E. Gershon, and K. Myung-Soo, Contouring 1- and 2- Manifolds in Arbitrary Dimensions, in SMI'05, 2005, pp. 218–227.Google Scholar
  17. [17]
    C. Liang, B. Mourrain, and J.-P. Pavone, Subdivision Methods for the Topology of 2d and 3d Implicit Curves, in Geometric Modeling and Algebraic Geometry, Bert Juetller and Ragni Piene, eds., Springer, 2007, pp. 199–214.Google Scholar
  18. [18]
    V. Milenkovic and E. Sacks, An approximate arrangement algorithm for semi-algebraic curves, in SCG'06: Proceedings of the twenty-second annual symposium on Computational geometry, New York, NY, USA, 2006, ACM Press, pp. 237–246.CrossRefGoogle Scholar
  19. [19]
    B. Mourrain and J.-P. Pavone, Subdivision methods for solving polynomial equations, J. of Symbolic Computation, doi:10.1016/j.jsc.2008.04.016 (2009), pp. 1–15. To appear (see also
  20. [20]
    B. Mourrain, J.-P. Técourt, and M. Teillaud, On the computation of an arrangement of quadrics in 3d, Comput. Geom. Theory Appl., 30 (2005), pp. 145–164. Special issue, 19th European Workshop on Computational Geometry, Bonn.MATHGoogle Scholar
  21. [21]
    E. Sherbrooke and N. Patrikalakis, Computation of the solutions of non-linear polynomials systems, Computer Aided Geometric Design, 10 (1993), pp. 379–405.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    N. Wolpert, Jacobi curves: Computing the exact topology of arrangements of non-singular algebraic curves, In ESA 2003, LNCS 2832, 12 (2003), pp. 532–543.MathSciNetGoogle Scholar
  23. [23]
    B. Zalik, M. Gombosi, and D. Podgorelec, A quick intersection algorithm for arbitrary polygons, in SCCG98 Conf. on Comput. Graphics and its Application, L.S. Kalos, ed., 1998, pp. 195–204.Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Bernard Mourrain
    • 1
  • Julien Wintz
    • 1
  1. 1.GALAAD, INRIAValbonneFrance

Personalised recommendations