Skip to main content

Synaptic Plasticity at Hippocampal Synapses

  • Chapter
Book cover Hippocampal Microcircuits

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 5))

  • 2550 Accesses

Abstract

This chapter will discuss what is currently known about synaptic plasticity at glutamatergic synapses in the hippocampus. Hippocampal synaptic plasticity is potentially a vast topic with many thousands of research papers published in the field. However, this chapter will not discuss the detailed molecular mechanisms underlying synaptic plasticity and instead will concentrate on the precise activity patterns required to induce synaptic plasticity. This includes the contribution of presynaptic and postsynaptic spiking and the importance of subthreshold postsynaptic depolarisation. Also, this chapter will attempt to relate various induction protocols to known in vivo patterns of neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Abraham, W.C., Christie, B.R., Logan, B., Lawlor, P., and Dragunow, M. (1994). Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci U S A 91, 10049–10053.

    CAS  PubMed  Google Scholar 

  • Alle, H., Jonas, P., and Geiger, J.R. (2001). PTP and LTP at a hippocampal mossy fiber-interneuron synapse. Proc Natl Acad Sci U S A 98, 14708–14713.

    CAS  PubMed  Google Scholar 

  • Asztely, F., Kokaia, M., Olofsdotter, K., Ortegren, U., and Lindvall, O. (2000). Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. Eur J Neurosci 12, 662–669.

    CAS  PubMed  Google Scholar 

  • Bashir, Z.I., Bortolotto, Z.A., Davies, C.H., Berretta, N., Irving, A.J., Seal, A.J., Henley, J.M., Jane, D.E., Watkins, J.C., and Collingridge, G.L. (1993). Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.

    CAS  PubMed  Google Scholar 

  • Bear, M.F., Cooper, L.N., and Ebner, F.F. (1987). A Physiological-basis for a theory of synapse modification. Science 237, 42–48.

    CAS  PubMed  Google Scholar 

  • Bi, G.Q., and Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18, 10464–10472.

    CAS  PubMed  Google Scholar 

  • Bienenstock, E.L., Cooper, L.N., and Munro, P.W. (1982). Theory for the development of neuron selectivity – orientation specificity and binocular interaction in visual-cortex. J Neurosci 2, 32–48.

    CAS  PubMed  Google Scholar 

  • Bliss, T.V., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    CAS  PubMed  Google Scholar 

  • Bliss, T.V., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232, 331–356.

    CAS  PubMed  Google Scholar 

  • Bloodgood, B.L., and Sabatini, B.L. (2007). Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53, 249–260.

    CAS  PubMed  Google Scholar 

  • Buchanan, K.A., and Mellor, J.R. (2007). The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones. J Physiol (Lond) 585, 429–445.

    CAS  Google Scholar 

  • Burrone, J., O’Byrne, M., and Murthy, V.N. (2002). Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418.

    CAS  PubMed  Google Scholar 

  • Caillard, O., Ben-Ari, Y., and Gaiarsa, J.L. (1999). Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J Physiol 518(Pt 1), 109–119.

    CAS  PubMed  Google Scholar 

  • Castillo, P.E., Weisskopf, M.G., and Nicoll, R.A. (1994). The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12, 261–269.

    CAS  PubMed  Google Scholar 

  • Chevaleyre, V., and Castillo, P.E. (2003). Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability (vol 38, pg 461, 2003). Neuron 38, 997–997.

    CAS  Google Scholar 

  • Cho, K., Aggleton, J.P., Brown, M.W., and Bashir, Z.I. (2001). An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol-London 532, 459–466.

    CAS  PubMed  Google Scholar 

  • Christie, B.R., and Abraham, W.C. (1992). Priming of associative long-term depression in the dentate gyrus by theta frequency synaptic activity. Neuron 9, 79–84.

    CAS  PubMed  Google Scholar 

  • Cohen, A.S., and Abraham, W.C. (1996). Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J Neurophysiol 76, 953–962.

    CAS  PubMed  Google Scholar 

  • Colino, A., and Malenka, R.C. (1993). Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. J Neurophysiol 69, 1150–1159.

    CAS  PubMed  Google Scholar 

  • Contractor, A., Rogers, C., Maron, C., Henkemeyer, M., Swanson, G.T., and Heinemann, S.F. (2002). Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869.

    CAS  PubMed  Google Scholar 

  • Cormier, R.J., Greenwood, A.C., and Connor, J.A. (2001). Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85, 399–406.

    CAS  PubMed  Google Scholar 

  • Davies, C.H., Starkey, S.J., Pozza, M.F., and Collingridge, G.L. (1991). GABA autoreceptors regulate the induction of LTP. Nature 349, 609–611.

    CAS  PubMed  Google Scholar 

  • Daw, M.I., Chittajallu, R., Bortolotto, Z.A., Dev, K.K., Duprat, F., Henley, J.M., Collingridge, G.L., and Isaac, J.T.R. (2000). PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886.

    CAS  PubMed  Google Scholar 

  • Debanne, D., Gahwiler, B.H., and Thompson, S.M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol-London 507, 237–247.

    CAS  PubMed  Google Scholar 

  • Dobrunz, L.E., and Stevens, C.F. (1999). Response of hippocampal synapses to natural stimulation patterns. Neuron 22, 157–166.

    CAS  PubMed  Google Scholar 

  • Doyere, V., Srebro, B., and Laroche, S. (1997). Heterosynaptic LTD and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J Neurophysiol 77, 571–578.

    CAS  PubMed  Google Scholar 

  • Dudek, S.M., and Bear, M.F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89, 4363–4367.

    CAS  PubMed  Google Scholar 

  • Dudek, S.M., and Bear, M.F. (1993). Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13, 2910–2918.

    CAS  PubMed  Google Scholar 

  • Dudman, J.T., Tsay, D., and Siegelbaum, S.A. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56, 866–879.

    CAS  PubMed  Google Scholar 

  • Dunwiddie, T., and Lynch, G. (1978). Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol 276, 353–367.

    CAS  PubMed  Google Scholar 

  • Frick, A., Magee, J., and Johnston, D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7, 126–135.

    CAS  PubMed  Google Scholar 

  • Froemke, R.C., and Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–438.

    CAS  PubMed  Google Scholar 

  • Froemke, R.C., Tsay, I.A., Raad, M., Long, J.D., and Dan, Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95, 1620–1629.

    PubMed  Google Scholar 

  • Gall, D., Prestori, F., Sola, E., D’Errico, A., Roussel, C., Forti, L., Rossi, P., and D’Angelo, E. (2005). Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci 25, 4813–4822.

    CAS  PubMed  Google Scholar 

  • Gisabella, B., Rowan, M.J., and Anwyl, R. (2003). Mechanisms underlying the inhibition of long-term potentiation by preconditioning stimulation in the hippocampus in vitro. Neuroscience 121, 297–305.

    CAS  PubMed  Google Scholar 

  • Golding, N.L., Staff, N.P., and Spruston, N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331.

    CAS  PubMed  Google Scholar 

  • Golowasch, J., Casey, M., Abbott, L.F., and Marder, E. (1999). Network stability from activity-dependent regulation of neuronal conductances. Neural Comput 11, 1079–1096.

    CAS  PubMed  Google Scholar 

  • Gundlfinger, A., Leibold, C., Gebert, K., Moisel, M., Schmitz, D., and Kempter, R. (2007). Differential modulation of short-term synaptic dynamics by long-term potentiation at mouse hippocampal mossy fibre synapses. J Physiol 585, 853–865.

    CAS  PubMed  Google Scholar 

  • Hansel, C., Artola, A., and Singer, W. (1996). Different threshold levels of postsynaptic [Ca2+]i have to be reached to induce LTP and LTD in neocortical pyramidal cells. J Physiol Paris 90, 317–319.

    CAS  PubMed  Google Scholar 

  • Hansel, C., Artola, A., and Singer, W. (1997). Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur J Neurosci 9, 2309–2322.

    CAS  PubMed  Google Scholar 

  • Harris, E.W., and Cotman, C.W. (1986). Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neuroscience Letters 70, 132–137.

    CAS  PubMed  Google Scholar 

  • Harvey, C.D., Collman, F., Dombeck, D.A., and Tank, D.W. (2009). Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946.

    CAS  PubMed  Google Scholar 

  • Hebb, D. (1949). The organisation of behaviour. New York: Wiley.

    Google Scholar 

  • Henze, D.A., Wittner, L., and Buzsaki, G. (2002). Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5, 790–795.

    CAS  PubMed  Google Scholar 

  • Huang, C.S., Shi, S.H., Ule, J., Ruggiu, M., Barker, L.A., Darnell, R.B., Jan, Y.N., and Jan, L.Y. (2005). Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 123, 105–118.

    CAS  PubMed  Google Scholar 

  • Huang, Y.Y., Colino, A., Selig, D.K., and Malenka, R.C. (1992). The influence of prior synaptic activity on the induction of long-term potentiation. Science 255, 730–733.

    CAS  PubMed  Google Scholar 

  • Huerta, P.T., and Lisman, J.E. (1993). Heightened synaptic plasticity of hippocampal ca1 neurons during a cholinergically induced rhythmic state. Nature 364, 723–725.

    CAS  PubMed  Google Scholar 

  • Huerta, P.T., and Lisman, J.E. (1995). Bidirectional synaptic plasticity induced by a single burst during cholinergic theta-oscillation in ca1 in-vitro. Neuron 15, 1053–1063.

    CAS  PubMed  Google Scholar 

  • Isaac, J.T., Nicoll, R.A., and Malenka, R.C. (1995). Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434.

    CAS  PubMed  Google Scholar 

  • Isaac, J.T., Bucahanan, K.A., Muller, R.U. and Mellor, J.R. (2009). Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro. J Neurosci 29, 6840–6850.

    CAS  PubMed  Google Scholar 

  • Ismailov, I., Kalikulov, D., Inoue, T., and Friedlander, M.J. (2004). The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosc 24, 9847–9861.

    CAS  Google Scholar 

  • Jahr, C.E., and Stevens, C.F. (1990). A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10, 1830–1837.

    CAS  PubMed  Google Scholar 

  • Kampa, B.M., Clements, J., Jonas, P., and Stuart, G.J. (2004). Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556, 337–345.

    CAS  PubMed  Google Scholar 

  • Karmarkar, U.R., and Buonomano, D.V. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88, 507–513.

    PubMed  Google Scholar 

  • Keller, D.X., Franks, K.M., Bartol, T.M., Jr., and Sejnowski, T.J. (2008). Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS ONE 3, e2045.

    PubMed  Google Scholar 

  • Kemp, N., McQueen, J., Faulkes, S., and Bashir, Z.I. (2000). Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur J Neurosci 12, 360–366.

    CAS  PubMed  Google Scholar 

  • Kobayashi, K., Manabe, T., and Takahashi, T. (1996). Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273, 648–650.

    CAS  PubMed  Google Scholar 

  • Kobayashi, K., Manabe, T., and Takahashi, T. (1999). Calcium-dependent mechanisms involved in presynaptic long-term depression at the hippocampal mossy fibre-CA3 synapse. Eur J Neurosci 11, 1633–1638.

    CAS  PubMed  Google Scholar 

  • Kobayashi, K., and Poo, M.M. (2004). Spike train timing-dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41, 445–454.

    CAS  PubMed  Google Scholar 

  • Kwon, H.B., and Castillo, P.E. (2008). Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron 57, 108–120.

    CAS  PubMed  Google Scholar 

  • Laezza, F., Doherty, J.J., and Dingledine, R. (1999). Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285, 1411–1414.

    CAS  PubMed  Google Scholar 

  • Lamsa, K., Heeroma, J.H., and Kullmann, D.M. (2005). Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat Neurosci 8, 916–924.

    CAS  PubMed  Google Scholar 

  • Lamsa, K.P., Heeroma, J.H., Somogyi, P., Rusakov, D.A., and Kullmann, D.M. (2007). Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315, 1262–1266.

    CAS  PubMed  Google Scholar 

  • Larson, J., Wong, D., and Lynch, G. (1986). Patterned stimulation at the theta-frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368, 347–350.

    CAS  PubMed  Google Scholar 

  • Lee, A.K., Manns, I.D., Sakmann, B., and Brecht, M. (2006). Whole-cell recordings in freely moving rats. Neuron 51, 399–407.

    CAS  PubMed  Google Scholar 

  • Lei, S., and McBain, C.J. (2002). Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron 33, 921–933.

    CAS  PubMed  Google Scholar 

  • Lei, S., Pelkey, K.A., Topolnik, L., Congar, P., Lacaille, J.C., and McBain, C.J. (2003). Depolarization-induced long-term depression at hippocampal mossy fiber-CA3 pyramidal neuron synapses. J Neurosci 23, 9786–9795.

    CAS  PubMed  Google Scholar 

  • Letzkus, J.J., Kampa, B.M., and Stuart, G.J. (2006). Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26, 10420–10429.

    CAS  PubMed  Google Scholar 

  • Levy, W.B., and Steward, O. (1979). Synapses as associative memory elements in the hippocampal formation. Brain Res 175, 233–245.

    CAS  PubMed  Google Scholar 

  • Lisman, J. (1989). A mechanism for the hebb and the anti-hebb processes underlying learning and memory. P Natl Acad Sci U S A 86, 9574–9578.

    CAS  Google Scholar 

  • Maccaferri, G., Roberts, J.D., Szucs, P., Cottingham, C.A., and Somogyi, P. (2000). Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524(Pt 1), 91–116.

    CAS  PubMed  Google Scholar 

  • Maccaferri, G., Toth, K., and McBain, C.J. (1998). Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368–1370.

    CAS  PubMed  Google Scholar 

  • Magee, J.C., and Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213.

    CAS  PubMed  Google Scholar 

  • Malenka, R.C., and Bear, M.F. (2004). LTP and LTD: An embarrassment of riches. Neuron 44, 5–21.

    CAS  PubMed  Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215.

    CAS  PubMed  Google Scholar 

  • McBain, C.J., and Mayer, M.L. (1994). N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74, 723–760.

    CAS  PubMed  Google Scholar 

  • McHugh, T.J., Blum, K.I., Tsien, J.Z., Tonegawa, S., and Wilson, M.A. (1996). Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87, 1339–1349.

    CAS  PubMed  Google Scholar 

  • McHugh, T.J., Jones, M.W., Quinn, J.J., Balthasar, N., Coppari, R., Elmquist, J.K., Lowell, B.B., Fanselow, M.S., Wilson, M.A., and Tonegawa, S. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99.

    CAS  PubMed  Google Scholar 

  • McMahon, L.L., and Kauer, J.A. (1997). Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295–305.

    CAS  PubMed  Google Scholar 

  • McNaughton, B.L., Douglas, R.M., and Goddard, G.V. (1978). Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157, 277–293.

    CAS  PubMed  Google Scholar 

  • Mellor, J., and Nicoll, R.A. (2001). Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 4, 125–126.

    CAS  PubMed  Google Scholar 

  • Meredith, R.M., Floyer-Lea, A.M., and Paulsen, O. (2003). Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. J Neurosci 23, 11142–11146.

    CAS  PubMed  Google Scholar 

  • Miller, K.D. (1996). Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374.

    CAS  PubMed  Google Scholar 

  • Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540.

    CAS  PubMed  Google Scholar 

  • Morris, R.G.M., Anderson, E., Lynch, G.S., and Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-Methyl-D-aspartate receptor antagonist, Ap5. Nature 319, 774–776.

    CAS  PubMed  Google Scholar 

  • Nakazawa, K., Quirk, M.C., Chitwood, R.A., Watanabe, M., Yeckel, M.F., Sun, L.D., Kato, A., Carr, C.A., Johnston, D., Wilson, M.A., and Tonegawa, S. (2002). Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218.

    CAS  PubMed  Google Scholar 

  • Neves, G., Cooke, S.F., and Bliss, T.V. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9, 65–75.

    CAS  PubMed  Google Scholar 

  • Nevian, T., and Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26, 11001–11013.

    CAS  PubMed  Google Scholar 

  • Nicoll, R.A., Kauer, J.A., and Malenka, R.C. (1988). The current excitement in long-term potentiation. Neuron 1, 97–103.

    CAS  PubMed  Google Scholar 

  • Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584–588.

    CAS  PubMed  Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307, 462–465.

    CAS  PubMed  Google Scholar 

  • O’Brien, R.J., Kamboj, S., Ehlers, M.D., Rosen, K.R., Fischbach, G.D., and Huganir, R.L. (1998). Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078.

    PubMed  Google Scholar 

  • Pastalkova, E., Serrano, P., Pinkhasova, D., Wallace, E., Fenton, A.A., and Sacktor, T.C. (2006). Storage of spatial information by the maintenance mechanism of LTP. Science 313, 1141–1144.

    CAS  PubMed  Google Scholar 

  • Patneau, D.K., and Mayer, M.L. (1990). Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10, 2385–2399.

    CAS  PubMed  Google Scholar 

  • Pike, F.G., Meredith, R.M., Olding, A.W.A., and Paulsen, O. (1999). Postsynaptic bursting is essential for ‘Hebbian’ induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol-London 518, 571–576.

    CAS  PubMed  Google Scholar 

  • Rebola, N., Lujan, R., Cunha, R.A., and Mulle, C. (2008). Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57, 121–134.

    CAS  PubMed  Google Scholar 

  • Regehr, W.G., and Tank, D.W. (1991). The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7, 451–459.

    CAS  PubMed  Google Scholar 

  • Rose, G.M., and Dunwiddie, T.V. (1986). Induction of hippocampal long-term potentiation using physiologically patterned stimulation. Neurosci Lett 69, 244–248.

    CAS  PubMed  Google Scholar 

  • Salin, P.A., Scanziani, M., Malenka, R.C., and Nicoll, R.A. (1996). Distinct short-term plasticity at two excitatory synapses in the hippocampus. P Natl Acad Sci U S A 93, 13304–13309.

    CAS  Google Scholar 

  • Schmitz, D., Mellor, J., Breustedt, J., and Nicoll, R.A. (2003). Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 6, 1058–1063.

    CAS  PubMed  Google Scholar 

  • Seol, G.H., Ziburkus, J., Huang, S., Song, L., Kim, I.T., Takamiya, K., Huganir, R.L., Lee, H.K., and Kirkwood, A. (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55, 919–929.

    CAS  PubMed  Google Scholar 

  • Shew, T., Yip, S., and Sastry, B.R. (2000). Mechanisms involved in tetanus-induced potentiation of fast IPSCs in rat hippocampal CA1 neurons. J Neurophysiol 83, 3388–3401.

    CAS  PubMed  Google Scholar 

  • Shouval, H.Z., and Kalantzis, G. (2005). Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol 93, 1069–1073.

    PubMed  Google Scholar 

  • Silver, R.A., Traynelis, S.F., and Cull-Candy, S.G. (1992). Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355, 163–166.

    CAS  PubMed  Google Scholar 

  • Sjostrom, P.J., and Hausser, M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227–238.

    CAS  PubMed  Google Scholar 

  • Sjostrom, P.J., and Nelson, S.B. (2002). Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12, 305–314.

    CAS  PubMed  Google Scholar 

  • Sjostrom, P.J., Turrigiano, G.G., and Nelson, S.B. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164.

    CAS  PubMed  Google Scholar 

  • Sjostrom, P.J., Turrigiano, G.G., and Nelson, S.B. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654.

    PubMed  Google Scholar 

  • Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., and Nelson, S.B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896.

    CAS  PubMed  Google Scholar 

  • Tzounopoulos, T., Janz, R., Südhof, T.C., Nicoll, R.A., and Malenka, R.C. (1998). A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21, 837–845.

    CAS  PubMed  Google Scholar 

  • Weisskopf, M.G., Zalutsky, R.A., and Nicoll, R.A. (1993). The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 365, 188.

    CAS  PubMed  Google Scholar 

  • Wigstrom, H., and Gustafsson, B. (1983). Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition. Nature 301, 603–604.

    CAS  PubMed  Google Scholar 

  • Wittenberg, G.M., and Wang, S.S.H. (2006). Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26, 6610–6617.

    CAS  PubMed  Google Scholar 

  • Woodin, M.A., Ganguly, K., and Poo, M.M. (2003). Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl-transporter activity. Neuron 39, 807–820.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Wang, X.B., Frerking, M., and Zhou, Q. (2008). Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc Natl Acad Sci U S A 105, 11388–11393.

    CAS  PubMed  Google Scholar 

  • Yeckel, M.F., Kapur, A., and Johnston, D. (1999). Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 2, 625–633.

    CAS  PubMed  Google Scholar 

  • Zalutsky, R.A., and Nicoll, R.A. (1990). Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619–1624.

    CAS  PubMed  Google Scholar 

  • Zucker, R.S., and Regehr, W.G. (2002). Short-term synaptic plasticity. Annu Rev Physiol 64, 355–405.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Mellor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mellor, J. (2010). Synaptic Plasticity at Hippocampal Synapses. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0996-1_6

Download citation

Publish with us

Policies and ethics