Skip to main content

A Phenomenological Calcium-Based Model of STDP

  • Chapter
Hippocampal Microcircuits

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 5))

Abstract

Activity-dependent synaptic plasticity is believed to underlie functional reconfiguration of neuronal circuits, which in turn serves as the biological substrate of higher brain functions such as learning and memory (Hebb 1949; Milner et al. 1998; Abbott and Nelson 2000). Decades after Donald Hebb’s famous neurophysiological postulate (Hebb 1949), various forms of synaptic plasticity including long-term potentiation (LTP) and long-term depression (LTD) have been the subject of intense experimental study (Bliss and Collingridge 1993; Malenka and Nicoll 1999; Lisman et al. 2003; Derkach et al. 2007). Among them, the recently discovered spike timingdependent plasticity (STDP) – during which the direction and extent of synaptic modification depend critically on the relative timing of pre- and postsynaptic action potentials or spikes (Bell et al. 1997; Magee and Johnston 1997; Markram et al. 1997; Mehta et al. 1997; Bi and Poo 1998; Debanne et al. 1998; Zhang et al. 1998; Feldman 2000) – has gained popularity partly because it is regarded as a physiologically relevant form of Hebbian plasticity (Abbott and Nelson 2000; Bi and Poo 2001; Dan and Poo 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • H. D. I. Abarbanel, L. Gibb, R. Huerta, and M. I. Rabinovich. Biophysical model of synaptic plasticity dynamics. Biol Cybern, 89:214–226, 2003.

    Article  PubMed  Google Scholar 

  • L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming the beast. Nat Neurosci, 3 Suppl:1178–83, 2000.

    Article  CAS  PubMed  Google Scholar 

  • B. K. Andrasfalvy and J. C. Magee. Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci, 21(23):9151–9, 2001.

    CAS  PubMed  Google Scholar 

  • A. Artola and W. Singer. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci, 16(11):480–7, 1993.

    Article  CAS  PubMed  Google Scholar 

  • J. S. Bains, J. M. Longacher, and K. J. Staley. Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nat Neurosci, 2(8):720–6, 1999.

    Article  CAS  PubMed  Google Scholar 

  • M. F. Bear and R. C. Malenka. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol, 4(3):389–99, 1994.

    Article  CAS  PubMed  Google Scholar 

  • C. C. Bell, V. Z. Han, Y. Sugawara, and K. Grant. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature, 387(6630):278–81, 1997.

    Article  CAS  PubMed  Google Scholar 

  • G. Q. Bi and J. Rubin. Timing in synaptic plasticity: from detection to integration. Trends in Neurosci, 28:222–228, 2005.

    Article  CAS  Google Scholar 

  • G. Q. Bi. Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol Cybern, 87(5–6):319–32, 2002.

    Article  PubMed  Google Scholar 

  • G. Q. Bi and M. M. Poo. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci, 24:139–66, 2001.

    Article  CAS  PubMed  Google Scholar 

  • G. Q. Bi and M. M. Poo. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci, 18(24):10464–72, 1998.

    CAS  PubMed  Google Scholar 

  • T. V. Bliss and G. L. Collingridge. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361(6407):31–9, 1993.

    Article  CAS  PubMed  Google Scholar 

  • D. V. Buonomano. Decoding temporal information. J Neurosci, 20:1129–41, 2000.

    CAS  PubMed  Google Scholar 

  • Y. Cai, J. P. Gavornik, L. N. Cooper, L. C. Yeung, and H. Z. Shouval. Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. J Neurophysiol, 97(1):375–86, 2007.

    Article  PubMed  Google Scholar 

  • N. Caporale and Y. Dan. Spike timing-dependent plasticity: a hebbian learning rule. Annu Rev Neurosci, 31:25–46, 2008. PMID: 18275283.

    Article  CAS  PubMed  Google Scholar 

  • G. L. Collingridge, S. J. Kehl, and H. McLennan. Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus. J Physiol, 334:33–46, 1983.

    CAS  PubMed  Google Scholar 

  • J. A. Cummings, R. M. Mulkey, R. A. Nicoll, and R. C. Malenka. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron, 16(4):825–33, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Y. Dan and M.-M. Poo. Spike timing-dependent plasticity: from synapse to perception. Physiol Rev, 86(3):1033–48, July 2006. PMID: 16816145.

    Article  Google Scholar 

  • D. Debanne, B. H. Gahwiler, and S. M. Thompson. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol, 507 (Pt 1):237–47, 1998.

    Article  CAS  PubMed  Google Scholar 

  • V. A. Derkach, M. C. Oh, E. S. Guire, and T. R. Soderling. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci, 8(2):101–13, February 2007. PMID: 17237803.

    Article  CAS  PubMed  Google Scholar 

  • R. Dingledine, M. A. Hynes, and G. L. King. Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J Physiol, 380:175–89, 1986.

    CAS  PubMed  Google Scholar 

  • S. M. Dudek and M. F. Bear. Homosynaptic long-term depression in area CA1 of hippocampus and effects of n-methyl-d-aspartate receptor blockade. Proc Nat Acad Sci USA, 89(10):4363–7, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Bard Ermentrout. Simulating, analyzing, and animating dynamical systems. SIAM, Philadelphia, PA, 2002.

    Google Scholar 

  • D. E. Feldman. Timing-based LTP and LTD at vertical inputs to layer ii/iii pyramidal cells in rat barrel cortex. Neuron, 27(1):45–56, 2000.

    Article  CAS  PubMed  Google Scholar 

  • R. C. Froemke and Y. Dan. Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416(6879):433–8, 2002.

    Article  CAS  PubMed  Google Scholar 

  • R. C. Froemke, M. M. Poo, and Y. Dan. Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature, 434(7030):221–5, 2005.

    Article  CAS  PubMed  Google Scholar 

  • R. C. Froemke, I. A. Tsay, M. Raad, J. D. Long, and Y. Dan. Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol, 95(3):1620–9, 2006.

    Article  PubMed  Google Scholar 

  • R. C. Gerkin, P. M. Lau, D. W. Nauen, Y. T. Wang, and G. Q. Bi. Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. J Neurophysiol, 97(4):2851–62, 2007.

    Article  CAS  PubMed  Google Scholar 

  • J. J. Hablitz and I. A. Langmoen. n-methyl-d-aspartate receptor antagonists reduce synaptic excitation in the hippocampus. J Neurosci, 6(1):102–6, 1986.

    CAS  PubMed  Google Scholar 

  • C. D. Harvey and K. Svoboda. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature, 450(7173):1195–200, 2007.

    Article  CAS  PubMed  Google Scholar 

  • D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

    Google Scholar 

  • W. R. Holmes. Models of calmodulin trapping and CaM Kinase ii activation in a dendritic spine. J Comput Neurosci, 8(1):65–85, 2000.

    Article  CAS  PubMed  Google Scholar 

  • I. Ismailov, D. Kalikulov, T. Inoue, and M. J. Friedlander. The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci, 24(44):9847–61, 2004.

    Article  CAS  PubMed  Google Scholar 

  • C. E. Jahr and C. F. Stevens. A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci, 10(6):1830–7, 1990.

    CAS  PubMed  Google Scholar 

  • C. E. Jahr and C. F. Stevens. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci, 10(9):3178–82, 1990.

    CAS  PubMed  Google Scholar 

  • C. E. Jahr and C. F. Stevens. Calcium permeability of the n-methyl-d-aspartate receptor channel in hippocampal neurons in culture. Proc Natl Acad Sci U S A, 90(24):11573–7, 1993.

    Article  CAS  PubMed  Google Scholar 

  • U. R. Karmarkar and D. V. Buonomano. A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurosci, 88:507–513, 2002.

    Google Scholar 

  • H. J. Koester and B. Sakmann. Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci U S A, 95(16):9596–601, 1998.

    Article  CAS  PubMed  Google Scholar 

  • J. J. Letzkus, B. M. Kampa, and G. J. Stuart. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci, 26(41):10420–9, 2006.

    Article  CAS  PubMed  Google Scholar 

  • J. Lisman. A mechanism for the hebb and the anti-hebb processes underlying learning and memory. Proc Natl Acad Sci U S A, 86(23):9574–8, 1989.

    Article  CAS  PubMed  Google Scholar 

  • J. Lisman, J. W. Lichtman, and J. R. Sanes. LTP: perils and progress. Nat Rev Neurosci, 4(11): 926–9, 2003.

    Article  CAS  PubMed  Google Scholar 

  • J. Lisman and N. Spruston. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat Neurosci, 8(7):839–41, 2005.

    CAS  PubMed  Google Scholar 

  • J. E. Lisman and A. M. Zhabotinsky. A model of synaptic memory: a camkii/pp1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron, 31(2):191–201, 2001.

    Article  CAS  PubMed  Google Scholar 

  • J. C. Magee and D. Johnston. A synaptically controlled, associative signal for hebbian plasticity in hippocampal neurons. Science, 275(5297):209–13, 1997.

    Article  CAS  PubMed  Google Scholar 

  • R. C. Malenka and R. A. Nicoll. Long-term potentiation – a decade of progress. Science, 285:1870–1874, 1999.

    Article  CAS  PubMed  Google Scholar 

  • M. Maravall, Z. F. Mainen, B. L. Sabatini, and K. Svoboda. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J, 78(5):2655–67, 2000.

    Article  CAS  PubMed  Google Scholar 

  • H. Markram, J. Lubke, M. Frotscher, and B. Sakmann. Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science, 275(5297):213–5, 1997.

    Article  CAS  PubMed  Google Scholar 

  • M. L. Mayer, G. L. Westbrook, and P. B. Guthrie. Voltage-dependent block by mg2+ of NMDA responses in spinal cord neurones. Nature, 309(5965):261–3, 1984.

    Article  CAS  PubMed  Google Scholar 

  • C. J. McBain and S. F. Traynelis. Malevolent lurkers no more: NMDA receptors come of age. J Physiol, 575(Pt 2):317–8, 2006.

    Article  CAS  PubMed  Google Scholar 

  • M. R. Mehta, C. A. Barnes, and B. L. McNaughton. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc Natl Acad Sci U S A, 94(16):8918–21, 1997.

    Article  CAS  PubMed  Google Scholar 

  • B. Milner, L. R. Squire, and E. R. Kandel. Cognitive neuroscience and the study of memory. Neuron, 20(3):445–68, 1998.

    Article  CAS  PubMed  Google Scholar 

  • A. Morrison, M. Diesmann, and W. Gerstner. Phenomenological models of synaptic plasticity based on spike timing. Biol Cybern, 98:459–78, 2008.

    Article  PubMed  Google Scholar 

  • R. M. Mulkey and R. C. Malenka. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron, 9(5):967–75, 1992.

    Article  CAS  PubMed  Google Scholar 

  • V. N. Murthy, T. J. Sejnowski, and C. F. Stevens. Dynamics of dendritic calcium transients evoked by quantal release at excitatory hippocampal synapses. Proc Natl Acad Sci U S A, 97(2):901–6, 2000.

    Article  CAS  PubMed  Google Scholar 

  • M. Nishiyama, K. Hong, K. Mikoshiba, M. M. Poo, and K. Kato. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408(6812):584–8, 2000.

    Article  CAS  PubMed  Google Scholar 

  • C. Normann, D. Peckys, C. H. Schulze, J. Walden, P. Jonas, and J. Bischolfberger. Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels. J Neurosci, 20:8290–8297, 2000.

    CAS  PubMed  Google Scholar 

  • L. Nowak, P. Bregestovski, P. Ascher, A. Herbet, and A. Prochiantz. Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307(5950):462–5, 1984.

    Article  CAS  PubMed  Google Scholar 

  • M. Perouansky and Y. Yaari. Kinetic properties of NMDA receptor-mediated synaptic currents in rat hippocampal pyramidal cells versus interneurones. J Physiol, 465:223–44, 1993.

    CAS  PubMed  Google Scholar 

  • J. P. Pfister and W. Gerstner. Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci, 26:2673–2682, 2006.

    Article  Google Scholar 

  • P. Poirazi, T. Brannon, and B. W. Mel. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron, 37(6):977–87, 2003.

    Article  CAS  PubMed  Google Scholar 

  • L. D. Pozzo-Miller, N. B. Pivovarova, J. A. Connor, T. S. Reese, and S. B. Andrews. Correlated measurements of free and total intracellular calcium concentration in central nervous system neurons. Microscopy Res Tech, 46(6):370–9, 1999.

    Article  CAS  Google Scholar 

  • J. E. Rubin, R. C. Gerkin, G. Q. Bi, and C. C. Chow. Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol, 93(5):2600–13, 2005.

    Article  PubMed  Google Scholar 

  • B. L. Sabatini, M. Maravall, and K. Svoboda. Ca2+ signaling in dendritic spines. Curr Opin Neurobiol, 11(3):349–56, 2001.

    Article  CAS  PubMed  Google Scholar 

  • B. L. Sabatini, T. G. Oertner, and K. Svoboda. The life cycle of Ca2+ ions in dendritic spines. Neuron, 33(3):439–52., 2002.

    Article  CAS  PubMed  Google Scholar 

  • G. H. Seol, J. Ziburkus, S. Y. Huang, L. Song, I. T. Kim, K. Takamiya, R. L. Huganir, H.-K. Lee, and A. Kirkwood. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron, 55(6):919–29, September 2007. PMID: 17880895.

    Article  CAS  PubMed  Google Scholar 

  • H. Z. Shouval and G. Kalantzis. Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol, 93(2):1069–73, 2005.

    Article  PubMed  Google Scholar 

  • H. Z. Shouval, M. F. Bear, and L. N. Cooper. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA, 99:10831–10836, 2002.

    Article  CAS  PubMed  Google Scholar 

  • H. Z. Shouval and G. Kalantzis. Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol, 93:1069–1073, 2005.

    Article  PubMed  Google Scholar 

  • P. J. Sjostrom, G. G. Turrigiano, and S. B. Nelson. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32(6):1149–64, 2001.

    Article  CAS  PubMed  Google Scholar 

  • P. J. Sjostrom, G. G. Turrigiano, and S. B. Nelson. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32:1149–1164, 2001.

    Article  CAS  PubMed  Google Scholar 

  • R. D. Traub, J. G. Jefferys, R. Miles, M. A. Whittington, and K. Toth. A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol, 481 (Pt 1):79–95, 1994.

    CAS  PubMed  Google Scholar 

  • T. Tzounopoulos, Y. Kim, D. Oertel, and L. O. Trussell. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci, 7(7):719–25, 2004.

    Article  CAS  PubMed  Google Scholar 

  • H. X. Wang, R. C. Gerkin, D. W. Nauen, and G. Q. Bi. Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci, 8(2):187–93, 2005.

    Article  CAS  PubMed  Google Scholar 

  • R. Yuste, A. Majewska, S. S. Cash, and W. Denk. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci, 19(6):1976–87, 1999.

    CAS  PubMed  Google Scholar 

  • A. M. Zhabotinsky. Bistability in the ca(2+)/calmodulin-dependent protein kinase-phosphatase system. Biophys J, 79(5):2211–21, 2000.

    Article  CAS  PubMed  Google Scholar 

  • J. C. Zhang, P. M. Lau, and G. Q. Bi. Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci USA, 106:13028–33, 2009.

    Article  CAS  PubMed  Google Scholar 

  • L. I. Zhang, H. W. Tao, C. E. Holt, W. A. Harris, and M. Poo. A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395(6697):37–44, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Gerkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gerkin, R.C., Bi, GQ., Rubin, J.E. (2010). A Phenomenological Calcium-Based Model of STDP. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0996-1_20

Download citation

Publish with us

Policies and ethics