Acentrosomal Spindle Formation Through the Heroic Age of Microscopy: Past Techniques, Present Thoughts, and Future Directions

Part of the Advances in Plant Biology book series (AIPB, volume 2)


Spindle bipolarity occurs in plant cells without the presence of animal-like centrosomes. A question still unanswered is what structures contribute to acentrosomal spindle formation in the absence of these organizing centers. Past and present research techniques have highlighted several mitotic structures (i.e., the preprophase band, perinuclear microtubules, and bridge microtubules) and interactions between these structures that appear to be involved in a plant-specific mechanism of establishing spindle bipolarity and organization. In this review, we explore how the discoveries of different microscopy techniques combine to form an emerging hypothesis in plant acentrosomal spindle formation and how this mechanism reflects the importance of organizing cell divisions in a tissue-specific context, based on proper cell wall placement, a hallmark of proper plant development.


Green Fluorescent Protein Nuclear Envelope Mitotic Spindle Asymmetrical Cell Division Spindle Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambrose JC, Cyr R (2007) The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19(1):226–236CrossRefPubMedGoogle Scholar
  2. 2.
    Ambrose JC, Cyr RJ (2008) Mitotic spindle organization by the preprophase band. Mol Plant 1:950–960CrossRefPubMedGoogle Scholar
  3. 3.
    Ambrose JC, Li W et al (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16(4):1584–1592CrossRefPubMedGoogle Scholar
  4. 4.
    Ambrose JC, Shoji T et al (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19(9):2763–2775CrossRefPubMedGoogle Scholar
  5. 5.
    Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19(11):4730–4737CrossRefPubMedGoogle Scholar
  6. 6.
    Bajer A (1955) Living smears from endosperm. Experientia 11:221–222CrossRefPubMedGoogle Scholar
  7. 7.
    Bajer A (1957) Cine-micrographic studies on mitosis in endosperm. III. The origin of the mitotic spindle. Exp Cell Res 13(3):493–502CrossRefPubMedGoogle Scholar
  8. 8.
    Bajer A, Mole-Bajer J (1969) Formation of spindle fibers, kinetochore orientation, and behavior of nuclear envelope during mitosis in endosperm – fine structural and in vitro studies. Chromosoma 27(4):448–484CrossRefGoogle Scholar
  9. 9.
    Bannigan A, Lizotte-Waniewski M et al (2007) Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Cell Motil Cytoskeleton 65(1):1–11CrossRefGoogle Scholar
  10. 10.
    Becker W (1938) Recent investigations in vivo on the division of plant cells. Bot Rev 4(8):446–472CrossRefGoogle Scholar
  11. 11.
    Burgess J (1970) Interactions between microtubules and the nuclear envelope during mitosis in a fern. Protoplasma 71:77–89CrossRefGoogle Scholar
  12. 12.
    Burgess J, Northcote DH (1967) A function of the preprophase band of microtubules in Phleum pratense. Planta 75:319–326CrossRefGoogle Scholar
  13. 13.
    Chan J, Calder G et al (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17(6):1737–1748CrossRefPubMedGoogle Scholar
  14. 14.
    Cleary AL, Gunning BES et al (1992) Microtubule and F-Actin dynamics at the division site in living Tradescantia stamen hair cells. J Cell Sci 103:977–988Google Scholar
  15. 15.
    Cronshaw J, Esau K (1968) Cell division in leaves of Nicotiana. Protoplasma 65(1):1–24CrossRefPubMedGoogle Scholar
  16. 16.
    De Mey J, Lambert AM et al (1982) Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci USA 79:1898–1902CrossRefPubMedGoogle Scholar
  17. 17.
    Eleftheriou E, Palevitz B (1992) The effect of cytochalasin D on preprophase band organization in root tip cells of Allium. J Cell Sci 103:989–998Google Scholar
  18. 18.
    Franke WW, Seib E et al (1977) Tubulin-containing structures in anastral mitotic apparatus of endosperm cells of plant Leucojum aestivum as revealed by immunofluorescence microscopy. Cytobiologie 15(1):24–48Google Scholar
  19. 19.
    Galatis B (1980) Microtubules and guard-cell morphogenesis in Zea mays L. J Cell Sci 45:211–244PubMedGoogle Scholar
  20. 20.
    Granger CL (2000) Development and use of a GFP-labeled reporter protein for observing microtubule behavior in living cells. Doctoral Disseration, Pennsylvania State University, University Park, PA. 240pgs.Google Scholar
  21. 21.
    Granger CL, Cyr RJ (2000) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114:599–607Google Scholar
  22. 22.
    Guignard L (1989) Centrosomes in plants. Bot Gaz 25(3):158–164CrossRefGoogle Scholar
  23. 23.
    Gunning BES, Harding AR et al (1978) Pre-prophase bands of microtubules in all categories of formative and proliferative cell division in Azolla roots. Planta 143:145–160CrossRefGoogle Scholar
  24. 24.
    Hardham AR, Gunning BES (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77:14–34CrossRefPubMedGoogle Scholar
  25. 25.
    Harris P, Bajer A (1965) Fine structure studies on mitosis in endosperm metaphase of Haemanthus Katherinae Bak. Chromosoma 16:624–636CrossRefGoogle Scholar
  26. 26.
    Hepler P, Palevitz B (1974) Microtubules and microfilaments. Annu Rev Plant Physiol 25:309–362CrossRefGoogle Scholar
  27. 27.
    Humphrey J (1895) Some recent cell literature. Bot Gaz 20(5):222–228CrossRefGoogle Scholar
  28. 28.
    Inoue S (1953) Polarization optical studies of the mitotic spindle. 1. The demonstration of spindle fibers in living cells. Chromosoma 5:487–500CrossRefPubMedGoogle Scholar
  29. 29.
    Inoue S, Bajer A (1961) Birefringence in endosperm mitosis. Chromosoma 12:48–63CrossRefPubMedGoogle Scholar
  30. 30.
    Inoue S, Dan K (1951) Birefringence of the dividing cell. J Morphol 89(3):423–455CrossRefGoogle Scholar
  31. 31.
    Joshi HC, Palacios MJ et al (1992) Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 356:80–83CrossRefPubMedGoogle Scholar
  32. 32.
    Kawamura E, Himmelspach R et al (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140(1):102–114CrossRefPubMedGoogle Scholar
  33. 33.
    Kawamura E, Wasteneys GO (2008) MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci 121(pt 24):4114–4123CrossRefPubMedGoogle Scholar
  34. 34.
    Kubiak J, Debrabander M et al (1986) Origin of the mitotic spindle in onion root-cells. Protoplasma 130(1):51–56CrossRefGoogle Scholar
  35. 35.
    Lambert AM (1980) Role of chromosomes in anaphase trigger and nuclear-envelope activity in spindle formation. Chromosoma 76(3):295–308CrossRefGoogle Scholar
  36. 36.
    Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250CrossRefPubMedGoogle Scholar
  37. 37.
    Lepper R (1956) The plant centrosome and the centrosome-blepharoplast homology. Bot Rev 22(6):375–417CrossRefGoogle Scholar
  38. 38.
    Liu B, Cyr RJ et al (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8:119–132CrossRefPubMedGoogle Scholar
  39. 39.
    Liu B, Marc J et al (1993) A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228PubMedGoogle Scholar
  40. 40.
    Lloyd C, Chan J (2006) Not so divided: the common basis of plant and animal mitosis. Nat Rev Mol Cell Biol 7:147–152CrossRefPubMedGoogle Scholar
  41. 41.
    Lloyd C, Slabas A et al (1980) Microtubules, protoplasts, and plant cell shape: an immunofluorescent study. Planta 147:500–506CrossRefGoogle Scholar
  42. 42.
    Lloyd C, Slabas A et al (1982) Novel features of the plant cytoskeleton. Cell Biol Int Rep 6:171–175CrossRefPubMedGoogle Scholar
  43. 43.
    Lloyd CW, Slabas AR et al (1979) Cytoplasmic microtubules of higher-plant cells visualized with anti-tubulin antibodies. Nature 279(5710):239–241CrossRefGoogle Scholar
  44. 44.
    Marc J, Granger CL et al (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1939CrossRefPubMedGoogle Scholar
  45. 45.
    Marcus AI, Li W et al (2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol Biol Cell 14(4):1717–1726CrossRefPubMedGoogle Scholar
  46. 46.
    Marquette W (1907) Manifestations of polarity in plant cells which are apparently without centrosomes. Bot Zentralbl 21(1):281–303Google Scholar
  47. 47.
    Martens P (1929) New experimental studies on mitosis in the living cell. Cellule 39:167–216Google Scholar
  48. 48.
    Mazia D (1984) Centrosomes and mitotic poles. Exp Cell Res 153(1):1–15CrossRefPubMedGoogle Scholar
  49. 49.
    McComb A (1900) The development of the karyokinetic spindle in vegetative cells of higher plants. Bull Torrey Bot Club 27(8):451–459CrossRefGoogle Scholar
  50. 50.
    Merdes A, Cleveland DW (1997) Pathways of spindle pole formation: different mechanisms; conserved components. J Cell Biol 138(5):953–956CrossRefPubMedGoogle Scholar
  51. 51.
    Mineyuki Y, Marc J et al (1991) Relationship between the preprophase band, nucleus and spindle in dividing Allium cotyledon cells. J Plant Physiol 138:640–649Google Scholar
  52. 52.
    Mineyuki Y, Palevitz BA (1990) Relationship between preprophase band organization, F-actin and the division site in Allium. Fluorescence and morphometric studies on cytochalasin treated cells. J Cell Sci 97:283–295Google Scholar
  53. 53.
    Newcomb EH (1969) Plant microtubules. Annu Rev Plant Physiol 20:253–288CrossRefGoogle Scholar
  54. 54.
    Nogami A, Suzaki T et al (1996) Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L.) root tip cells. Protoplasma 192:109–121CrossRefGoogle Scholar
  55. 55.
    Palevitz BA, Hepler PK (1974) The control of the plane of division during stomatal differentiation in Allium. I. Spindle reorientation. Chromosoma 46:297–326CrossRefGoogle Scholar
  56. 56.
    Pearson CG, Bloom K (2004) Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 5(6):481–492CrossRefPubMedGoogle Scholar
  57. 57.
    Pickett-Heaps JD (1969) Preprophase microtubules and stomatal differentiation; some effects of centrifugation on symmetrical and asymmetrical cell division. J Ultrastruct Res 27:24–44CrossRefGoogle Scholar
  58. 58.
    Pickett-Heaps JD, Northcote DH (1966) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci 1:109–120PubMedGoogle Scholar
  59. 59.
    Pickett-Heaps JD, Northcote DH (1966) Cell division in the formation of the stomatal complex of the young leaves of wheat. J Cell Sci 1(1):121–128PubMedGoogle Scholar
  60. 60.
    Powell AJ, Lloyd CW et al (1980) Demonstration of the microtubular cytoskeleton of the moss, Physcomitrella patens, using antibodies against mammalian brain tubulin. Plant Sci Lett 18(4):401–404CrossRefGoogle Scholar
  61. 61.
    Rosza G, Wyckoff R (1950) The electron microscopy of dividing cells. Biochim Biophys Acta 6:334–339CrossRefGoogle Scholar
  62. 62.
    Sabatini DD, Miller F et al (1964) Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope. J Histochem Cytochem 12:57–71PubMedGoogle Scholar
  63. 63.
    Schaffner J (1898) Karyokinesis in the root tips of Allium cepa. Bot Gaz 26(4):225–238CrossRefGoogle Scholar
  64. 64.
    Schrader F (1934) On the reality of spindle fibers. Biol Bull 67(3):519–533CrossRefGoogle Scholar
  65. 65.
    Sedar AW, Wilson DF (1950) An electron microscope study of mitosis in the onion root tip. Anat Rec 108(3):531–532Google Scholar
  66. 66.
    Siller HK, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374CrossRefPubMedGoogle Scholar
  67. 67.
    Smirnova EA, Bajer AS (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskeleton 27(3):219–233CrossRefPubMedGoogle Scholar
  68. 68.
    Srivasta LM, Singh AP (1972) Certain aspects of xylem differentiation in corn. Can J Bot 50(9):1795–1804CrossRefGoogle Scholar
  69. 69.
    Ueda K, Matsuyama T et al (1999) Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma 206:201–206CrossRefGoogle Scholar
  70. 70.
    Uppalapati M, Huang YM et al (2008) Microtubule alignment and manipulation using AC electrokinetics. Small 4(9):1371–1381CrossRefPubMedGoogle Scholar
  71. 71.
    Van der Valk P, Rennie PJ et al (1980) Distribution of cortical microtubules in tobacco protoplasts – an immunofluorescence microscopic and ultrastructural study. Protoplasma 105(1–2):27–43CrossRefGoogle Scholar
  72. 72.
    Wick S, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Pre-prophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol 97:235–243CrossRefPubMedGoogle Scholar
  73. 73.
    Wick S, Duniec J (1984) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. II. Transition between the pre-prophase band and the mitotic spindle. Protoplasma 122:45–55CrossRefGoogle Scholar
  74. 74.
    Wick SM, Seagull RW et al (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89:685–690CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang DH, Wadsworth P et al (1990) Microtubule dynamics in living dividing plant-cells – confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87(22):8820–8824CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations