Microtubule Plus End-Tracking Proteins and Their Activities in Plants

  • Robin E. Young
  • Sherryl R. Bisgrove
Part of the Advances in Plant Biology book series (AIPB, volume 2)


Microtubules form a dynamic system of filaments that have essential roles in all eukaryotic cells. Although microtubules are well-conserved across eukaryotic phyla, the organization and function of the microtubule cytoskeleton has evolved in ways that set higher plants apart from other organisms. The mechanisms that underlie these differences are topics of long-standing interest to plant cell biologists. A feature that is a key to microtubule function is their dynamic nature; they usually exist in states of growth or shrinkage. Their ability to grow, depolymerize, and then re-grow in new directions allows them to explore the cytoplasm and to rearrange into different configurations as needed. Microtubules also function in concert with a fleet of proteins that regulate microtubule activities within the cell. This chapter focuses on a specialized group of microtubule associated proteins (MAPs) that localize to the more active or plus ends of microtubules. From their position at the active end of the microtubule, these plus end-tracking proteins, or +TIPs, have a large influence on microtubule behaviour. They regulate growth and shrinkage rates and mediate interactions of the microtubule end with other proteins or structures in the cell. A number of +TIPs have been identified from several organisms including plants. The proteins form a structurally and functionally diverse group that have very little in common aside from an affinity for microtubule plus ends. Current models propose that these proteins form a dynamic +TIP network that is remodelled to include different sets of proteins depending on the needs of the cell. Here we discuss the repertoire of +TIP families found in plants. Plant cells have homologs corresponding to several proteins with plus-end binding activity in other organisms. Analyses indicate that there is some functional conservation amongst these proteins, although there are also cases where the plant proteins have been modified to function in different ways. In addition to conserved proteins, plants use at least one +TIP family that is not found in other eukaryotic genomes and there are some families that appear to be absent in higher plant lineages. The research to date suggests that plants have a somewhat modified +TIP network which is uniquely suited to the needs of the plant cell.


Adenomatous Polyposis Coli Motor Domain Cortical Microtubule Microtubule Array Preprophase Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge Shannon Squires for performing the bioinformatic searches for the SxIP domain in the Arabidopsis databases. This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (Application 331017) awarded to S.R.B.


  1. 1.
    Abe T, Hashimoto T (2005) Altered microtubule dynamics by expression of modified α-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants. Plant J 43:191–204PubMedCrossRefGoogle Scholar
  2. 2.
    Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, De Zeeuw CI, Grosveld F, Galjart N (2001) CLASPs are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104:923–935PubMedCrossRefGoogle Scholar
  3. 3.
    Akhmanova A, Stehbens SJ, Yap AS (2009) Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions. Traffic 10:268–274PubMedCrossRefGoogle Scholar
  4. 4.
    Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322PubMedCrossRefGoogle Scholar
  5. 5.
    Ambrose JC, Cyr R (2007) The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19:226–236PubMedCrossRefGoogle Scholar
  6. 6.
    Ambrose JC, Cyr R (2008) Mitotic spindle organization by the preprophase band. Mol Plant 1:950–960PubMedCrossRefGoogle Scholar
  7. 7.
    Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is Iivolved in spindle morphogenesis. Mol Biol Cell 16:1584–1592PubMedCrossRefGoogle Scholar
  8. 8.
    Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19:2763–2775PubMedCrossRefGoogle Scholar
  9. 9.
    Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19:4730–4737PubMedCrossRefGoogle Scholar
  10. 10.
    Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120:3327–3335PubMedCrossRefGoogle Scholar
  11. 11.
    Askham JM, Vaughan KT, Goodson HV, Morrison EE (2002) Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell 13:3627–3645PubMedCrossRefGoogle Scholar
  12. 12.
    Bannigan A, Lizotte-Waniewski M, Riley M, Baskin TI (2008) Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Plant Cell Physiol 65:1–11Google Scholar
  13. 13.
    Bartolini F, Gundersen GG (2006) Generation of noncentrosomal microtubule arrays. J Cell Sci 119:4155–4163PubMedCrossRefGoogle Scholar
  14. 14.
    Bartolini F, Moseley JB, Schmoranzer J, Cassimeris L, Goode BL, Gundersen GG (2008) The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J Cell Biol 181:523–536PubMedCrossRefGoogle Scholar
  15. 15.
    Berrueta L, Kraeft S-K, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE (1998) The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci U S A 95:10596–10601PubMedCrossRefGoogle Scholar
  16. 16.
    Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665PubMedCrossRefGoogle Scholar
  17. 17.
    Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100–1105PubMedCrossRefGoogle Scholar
  18. 18.
    Bill Wickstead KG (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8:1708–1721PubMedCrossRefGoogle Scholar
  19. 19.
    Bisgrove SR, Hable WE, Kropf DL (2004) +TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiol 136:3855–3863PubMedCrossRefGoogle Scholar
  20. 20.
    Bisgrove SR, Lee YR, Liu B, Peters NT, Kropf DL (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20:396–410PubMedCrossRefGoogle Scholar
  21. 21.
    Brandner K, Sambade A, Boutant E, Didier P, Mely Y, Ritzenthaler C, Heinlein M (2008) Tobacco mosaic virus movement protein interacts with green fluorescent protein-tagged microtubule end-binding protein 1. Plant Physiol 147:611–623PubMedCrossRefGoogle Scholar
  22. 22.
    Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA (2008) XMAP215 is a processive microtubule polymerase. Cell 132:79–88PubMedCrossRefGoogle Scholar
  23. 23.
    Bu W, Su L-K (2003) Characterization of functional domains of human EB1 family proteins. J Biol Chem 278:49721–49731PubMedCrossRefGoogle Scholar
  24. 24.
    Cai G (2010) Assembly and disassembly of plant microtubules: tubulin modifications and binding to MAPs. J Exp Bot 61:623–626PubMedCrossRefGoogle Scholar
  25. 25.
    Chan J, Calder G, Fox S, Lloyd C (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17:1737–1748PubMedCrossRefGoogle Scholar
  26. 26.
    Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5:967–971PubMedCrossRefGoogle Scholar
  27. 27.
    Chretien D, Fuller SD, Karsenti E (1995) Structure of growing microtubule ends: two dimensional sheets close into tubes at variable rates. J Cell Biol 129:1311–1328PubMedCrossRefGoogle Scholar
  28. 28.
    Chretien D, Janosi I, Taveau J-C, Flyvbjerg H (1999) Microtubule’s conformational cap. Cell Struct Funct 24:299–303PubMedCrossRefGoogle Scholar
  29. 29.
    Collings DA, Lill AW, Himmelspach R, Wasteneys GO (2006) Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol 170:275–290PubMedCrossRefGoogle Scholar
  30. 30.
    Coquelle FM, Vitre B, Arnal I (2009) Structural basis of EB1 effects on microtubule dynamics. Biochem Soc Trans 37:997–1001PubMedCrossRefGoogle Scholar
  31. 31.
    Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof Y-D, Schumacher K, Gonneau M, Hofte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154PubMedCrossRefGoogle Scholar
  32. 32.
    des Georges A, Katsuki M, Drummond DR, Osei M, Cross RA, Amos LA (2008) Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat Struct Mol Biol 15:1102–1108PubMedCrossRefGoogle Scholar
  33. 33.
    Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Ann Rev Cell Dev Biol 13:83–117CrossRefGoogle Scholar
  34. 34.
    Dhonukshe P, Gadella TWJJ (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15:596–611Google Scholar
  35. 35.
    Dhonukshe P, Mathur J, Hulskamp M, Gadella TJ (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11–25PubMedCrossRefGoogle Scholar
  36. 36.
    Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Pous C, Perez F (2008) Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322:1353–1356PubMedCrossRefGoogle Scholar
  37. 37.
    Dixit R, Barnett J, Lazarus JE, Tokito M, Goldman YE, Holzbaur ELF (2009) Microtubule plus-end tracking by CLIP-170 requires EB1. Proc Natl Acad Sci U S A 106:492–497PubMedCrossRefGoogle Scholar
  38. 38.
    Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17:1298–1305PubMedCrossRefGoogle Scholar
  39. 39.
    Dixit R, Cyr R (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16:3274–3284PubMedCrossRefGoogle Scholar
  40. 40.
    Emons AM, Keelaar T (eds) (2009) Intracellular organization: a prerequisite for root hair elongation and cell wall deposition. Plant cell monograph, vol 12. Springer, Berlin, pp 27–44Google Scholar
  41. 41.
    Folker ES, Baker BM, Goodson HV (2005) Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of CLIP-170 plus-end tracking behavior. Mol Biol Cell 16:5373–5384PubMedCrossRefGoogle Scholar
  42. 42.
    Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell elongation in Aarabidopsis thaliana. Development 127:4443–4453PubMedGoogle Scholar
  43. 43.
    Gard DL, Becker BE, Josh Romney S (2004) MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int Rev Cytol 239:179–272PubMedCrossRefGoogle Scholar
  44. 44.
    Gard DL, Kirschner MW (1987) A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol 105:2203–2215PubMedCrossRefGoogle Scholar
  45. 45.
    Gardiner J, Marc J (2003) Putative microtubule-associated proteins from the Arabidopsis genome. Protoplasma 222:61–74PubMedCrossRefGoogle Scholar
  46. 46.
    Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10:1181–1189PubMedCrossRefGoogle Scholar
  47. 47.
    Goode BL, Drubin DG, Barnes G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71PubMedCrossRefGoogle Scholar
  48. 48.
    Grigoriev I, Gouveia SM, van der Vaart B, Demmers J, Smyth JT, Honnappa S, Splinter D, Steinmetz MO, Putney JW Jr, Hoogenraad CC, Akhmanova A (2008) STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol 18:177–182PubMedCrossRefGoogle Scholar
  49. 49.
    Guo L, Ho C-HK, Kong Z, Lee Y-RJ, Qian Q, Liu B (2009) Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot 103:387–402PubMedCrossRefGoogle Scholar
  50. 50.
    Hayashi I, Ikura M (2003) Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J Biol Chem 278:36430–36434PubMedCrossRefGoogle Scholar
  51. 51.
    Hayashi I, Wilde A, Mal TK, Ikura M (2005) Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol Cell 19:449–460PubMedCrossRefGoogle Scholar
  52. 52.
    Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJA, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wüthrich K, Akhmanova A, Steinmetz MO (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–376PubMedCrossRefGoogle Scholar
  53. 53.
    Honnappa S, John CM, Kostrewa D, Winkler FK, Steinmetz MO (2005) Structural insights into the EB1-APC interaction. EMBO J 24:261–269PubMedCrossRefGoogle Scholar
  54. 54.
    Honnappa S, Okhrimenko O, Jaussi R, Jawhari H, Jelesarov I, Winkler FK, Steinmetz MO (2006) Key interaction modes of dynamic +TIP networks. Mol Cell 23:663–671PubMedCrossRefGoogle Scholar
  55. 55.
    Howard J, Hyman AA (2009) Growth, fluctuation and switching at microtubule plus ends. Nat Rev Mol Cell Biol 10:569–574PubMedCrossRefGoogle Scholar
  56. 56.
    Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S, Wordeman L, Howard J (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 11:445–457PubMedCrossRefGoogle Scholar
  57. 57.
    Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007) Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:8544–8549PubMedCrossRefGoogle Scholar
  58. 58.
    Jiang K, Wang J, Liu J, Ward T, Wordeman L, Davidson A, Wang F, Yao X (2009) TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO 10:857–865CrossRefGoogle Scholar
  59. 59.
    Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140:102–114PubMedCrossRefGoogle Scholar
  60. 60.
    Kawamura E, Wasteneys GO (2008) MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci 121:4114–4123PubMedCrossRefGoogle Scholar
  61. 61.
    Ketelaar T, de Ruijter NC, Emons AM (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292PubMedCrossRefGoogle Scholar
  62. 62.
    King JS, Veltman DM, Georgiou M, Baum B, Insall RH (2010) SCAR/WAVE is activated at mitosis and drives myosin-independent cytokinesis. J Cell Sci 123:2246–2255PubMedCrossRefGoogle Scholar
  63. 63.
    Komaki S, Abe T, Coutuer S, Inze D, Russinova E, Hashimoto T (2010) Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J Cell Sci 123:451–459PubMedCrossRefGoogle Scholar
  64. 64.
    Komarova Y, De Groot CO, Grigoriev I, Gouveia SM, Munteanu EL, Schober JM, Honnappa S, Buey RM, Hoogenraad CC, Dogterom M, Borisy GG, Steinmetz MO, Akhmanova A (2009) Mammalian end binding proteins control persistent microtubule growth. J Cell Biol 184:691–706PubMedCrossRefGoogle Scholar
  65. 65.
    Korinek WS, Copeland MJ, Chaudhuri A, Chant J (2000) Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287:2257–2259PubMedCrossRefGoogle Scholar
  66. 66.
    Kronja I, Kruljac-Letunic A, Caudron-Herger M, Bieling P, Karsenti E (2009) XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract. Mol Biol Cell 20:2684–2696PubMedCrossRefGoogle Scholar
  67. 67.
    Kumar P, Lyle KS, Gierke S, Matov A, Danuser G, Wittmann T (2009) GSK3b phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment. J Cell Biol 184:895–908PubMedCrossRefGoogle Scholar
  68. 68.
    Lansbergen G, Akhmanova A (2006) Microtubule plus end: a hub of cellular activities. Traffic 7:499–507PubMedCrossRefGoogle Scholar
  69. 69.
    Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LSB, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy ASN, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22PubMedCrossRefGoogle Scholar
  70. 70.
    Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363PubMedCrossRefGoogle Scholar
  71. 71.
    Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250PubMedCrossRefGoogle Scholar
  72. 72.
    Lee L, Tirnauer JS, Li J, Schuyler SC, Liu JY, Pellman D (2000) Positioning of the mitotic spindle by a cortical microtubule capture mechanism. Science 287:2260–2262PubMedCrossRefGoogle Scholar
  73. 73.
    Lee T, Langford KJ, Askham JM, Bruning-Richardson A, Morrison EE (2008) MCAK associates with EB1. Oncogene 27:2494–2500PubMedCrossRefGoogle Scholar
  74. 74.
    Lee W-L, Bezanilla M, Pollard TD (2000) Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J Cell Biol 151:789–799PubMedCrossRefGoogle Scholar
  75. 75.
    Lee Y-RJ, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883PubMedCrossRefGoogle Scholar
  76. 76.
    Lee YJ, Yang Z (2008) Tip growth: signaling in the apical dome. Curr Opin Plant Biol 11:662–671PubMedCrossRefGoogle Scholar
  77. 77.
    Ligon LA, Shelly SS, Tokito M, Holzbaur ELF (2003) The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol Biol Cell 14:1405–1417PubMedCrossRefGoogle Scholar
  78. 78.
    Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AIM (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117:1117–1128PubMedCrossRefGoogle Scholar
  79. 79.
    Lu L, Lee Y-RJ, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823PubMedCrossRefGoogle Scholar
  80. 80.
    Maiato H, Fairley EAL, Rieder CL, Swedlow JR, Sunkel CE, Earnshaw WC (2003) Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113:891–904PubMedCrossRefGoogle Scholar
  81. 81.
    Maney T, Hunter AW, Wagenbach M, Wordeman L (1998) Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 142:787–801PubMedCrossRefGoogle Scholar
  82. 82.
    Manna T, Honnappa S, Steinmetz MO, Wilson L (2008) Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150Glued. Biochemistry 47:779–786PubMedCrossRefGoogle Scholar
  83. 83.
    Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hulskamp M (2003) A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol 13:1991–1997PubMedCrossRefGoogle Scholar
  84. 84.
    Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  85. 85.
    Miller RK, Cheng S-C, Rose MD (2000) Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol Biol Cell 11:2949–2959PubMedGoogle Scholar
  86. 86.
    Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A (2005) CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol 168:141–153PubMedCrossRefGoogle Scholar
  87. 87.
    Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) Adenomatous Polyposis Coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 148:505–518PubMedCrossRefGoogle Scholar
  88. 88.
    Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10:865–868PubMedCrossRefGoogle Scholar
  89. 89.
    Minc N, Bratman SV, Basu R, Chang F (2009) Establishing new sites of polarization by microtubules. Curr Biol 19:83–94PubMedCrossRefGoogle Scholar
  90. 90.
    Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242PubMedCrossRefGoogle Scholar
  91. 91.
    Moore AT, Rankin KE, von Dassow G, Peris L, Wagenbach M, Ovechkina Y, Andrieux A, Job D, Wordeman L (2005) MCAK associates with the tips of polymerizing microtubules. J Cell Biol 169:391–397PubMedCrossRefGoogle Scholar
  92. 92.
    Morrison EE, Wardleworth BN, Askham JM, Markham AF, Meredith DM (1998) EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17:3471–3477PubMedCrossRefGoogle Scholar
  93. 93.
    Müller S, Wright AJ, Smith LG (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19:180–188PubMedCrossRefGoogle Scholar
  94. 94.
    Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190PubMedCrossRefGoogle Scholar
  95. 95.
    Nakajima K, Kawamura T, Hashimoto T (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol 47:513–522PubMedCrossRefGoogle Scholar
  96. 96.
    Nakamura M, Zhou XZ, Lu KP (2001) Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 11:1062–1067PubMedCrossRefGoogle Scholar
  97. 97.
    Niethammer P, Kronja I, Kandels-Lewis S, Rybina S, Bastiaens P, Karsenti E (2007) Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biol 5:190–202CrossRefGoogle Scholar
  98. 98.
    Pedersen LB, Geimer S, Sloboda RD, Rosenbaum JL (2003) The microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr Biol 13:1969–1974PubMedCrossRefGoogle Scholar
  99. 99.
    Pedersen LB, Miller MS, Geimer S, Leitch JM, Rosenbaum JL, Cole DG (2005) Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr Biol 15:262–266PubMedCrossRefGoogle Scholar
  100. 100.
    Petrásek J, Schwarzerová K (2009) Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol 12:728–734PubMedCrossRefGoogle Scholar
  101. 101.
    Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2PubMedCrossRefGoogle Scholar
  102. 102.
    Rehberg M, Graf R (2002) Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol Biol Cell 13:2301–2310PubMedCrossRefGoogle Scholar
  103. 103.
    Richardson DE, Simmons MP, Reddy ASN (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18PubMedCrossRefGoogle Scholar
  104. 104.
    Robert S, Bichet A, Grandjean O, Kierzkowski D, Satiat-Jeunemaitre B, Pelletier S, Hauser M-T, Hofte H, Vernhettes S (2005) An Arabidopsis endo-1, 4-β-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17:3378–3389PubMedCrossRefGoogle Scholar
  105. 105.
    Rogers SL, Rogers GC, Sharp DJ, Vale RD (2002) Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158:873–884PubMedCrossRefGoogle Scholar
  106. 106.
    Rogers SL, Wiedemann U, Hacker U, Turck C, Vale RD (2004) Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr Biol 14:1827–1833PubMedCrossRefGoogle Scholar
  107. 107.
    Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17:1749–1763PubMedCrossRefGoogle Scholar
  108. 108.
    Sandblad L, Busch KE, Tittmann P, Gross H, Brunner D, Hoenger A (2006) The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127:1415–1424PubMedCrossRefGoogle Scholar
  109. 109.
    Schmit A-C, Nick P (2008) Microtubules and the evolution of mitosis. In: Nick P (ed) Plant cell monograph, vol 11. Springer, Berlin, pp 234–266Google Scholar
  110. 110.
    Schober JM, Cain JM, Komarova YA, Borisy GG (2009) Migration and actin protrusion in melanoma cells are regulated by EB1 protein. Cancer Lett 284:30–36PubMedCrossRefGoogle Scholar
  111. 111.
    Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779PubMedCrossRefGoogle Scholar
  112. 112.
    Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible WR, Somerville CR (2004) The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16:1506–1520PubMedCrossRefGoogle Scholar
  113. 113.
    Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718PubMedCrossRefGoogle Scholar
  114. 114.
    Sieberer BJ, Timmers CJ (2009) Microtubules in plant root hairs and their role in cell polarity and tip growth. In: Emons AM, Ketelaar T (eds) Plant cell monograph, vol 12. Springer, Berlin, pp 233–248Google Scholar
  115. 115.
    Simon JR, Salmon ED (1990) The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. J Cell Sci 96:571–582PubMedGoogle Scholar
  116. 116.
    Skube SB, Chaverri JM, Goodson HV (2009) Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo. Cell Motil Cytoskeleton 67:1–12Google Scholar
  117. 117.
    Slep KC (2009) The role of TOG domains in microtubule plus end dynamics. Biochem Soc Trans 37:1002–1006PubMedCrossRefGoogle Scholar
  118. 118.
    Slep KC (2010) Structural and mechanistic insights into microtubule end-binding proteins. Curr Opin Cell Biol 22:88–95PubMedCrossRefGoogle Scholar
  119. 119.
    Slep KC, Rogers SL, Elliot SL, Okhura H, Kolodziej PA, Vale RD (2005) Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J Cell Biol 168:587–598PubMedCrossRefGoogle Scholar
  120. 120.
    Steinmetz MO, Akhmanova A (2008) Capturing protein tails by CAP-Gly domains. Trends Biochem Sci 33:535–545PubMedCrossRefGoogle Scholar
  121. 121.
    Straube A, Brill M, Oakley BR, Horio T, Steinberg G (2003) Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol Biol Cell 14:642–657PubMedCrossRefGoogle Scholar
  122. 122.
    Su L-K, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler KW (1995) APC binds to the novel protein EB1. Cancer Res 55:2972–2977PubMedGoogle Scholar
  123. 123.
    Tanaka K, Mukae N, Dewar H, van Breugel M, James EK, Prescott AR, Antony C, Tanaka TU (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434:987–994PubMedCrossRefGoogle Scholar
  124. 124.
    Tirnauer JS, Canman JC, Salmon ED, Mitchison T (2002) EB1 targets to kinetochores with attached polymerizing microtubules. Mol Biol Cell 13:4308–4316PubMedCrossRefGoogle Scholar
  125. 125.
    Tirnauer JS, Grego S, Salmon ED, Mitchison T (2002) EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol Biol Cell 13:3614–3626PubMedCrossRefGoogle Scholar
  126. 126.
    Tirnauer JS, O’Toole E, Berrueta L, Bierer BE, Pellman D (1999) Yeast Bim1p promotes the G1-specific dynamics of microtubules. J Cell Biol 145:993–1007PubMedCrossRefGoogle Scholar
  127. 127.
    Tsvetkov AS, Samsonov A, Akhmanova A, Galjart N, Popov SV (2007) Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil Cytoskeleton 64:519–530PubMedCrossRefGoogle Scholar
  128. 128.
    Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714PubMedCrossRefGoogle Scholar
  129. 129.
    Van Damme D, Bouget F-Y, Van Poucke K, Inze D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398PubMedCrossRefGoogle Scholar
  130. 130.
    Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136:3956–3967PubMedCrossRefGoogle Scholar
  131. 131.
    van der Vaart B, Akhmanova A, Straube A (2009) Regulation of microtubule dynamic instability. Biochem Soc Trans 37:1007–1013PubMedCrossRefGoogle Scholar
  132. 132.
    Vaughan KT (2004) Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal? Trends Cell Biol 14:491–496PubMedCrossRefGoogle Scholar
  133. 133.
    Vaughan KT (2005) TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol 171:197–200PubMedCrossRefGoogle Scholar
  134. 134.
    Vitre B, Coquelle FM, Heichette C, Garnier C, Chretien D, Arnal I (2008) EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 10:415–421PubMedCrossRefGoogle Scholar
  135. 135.
    Vos JW, Dogterom M, Emons AMC (2004) Microtubules become more dynamic but not shorter during preprophase band formation: a possible “search and capture” mechanism for microtubule translocation. Cell Motil Cytoskeleton 57:246–258PubMedCrossRefGoogle Scholar
  136. 136.
    Walczak CE (2003) The Kin I kinesins are microtubule end-stimulated ATPases. Mol Cell 11:286–288PubMedCrossRefGoogle Scholar
  137. 137.
    Walczak CE, Mitchison T, Desai A (1996) XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84:37–47PubMedCrossRefGoogle Scholar
  138. 138.
    Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J. Cell Sci 115:1345–1354Google Scholar
  139. 139.
    Wasteneys GO, Ambrose JC (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19:62–71PubMedCrossRefGoogle Scholar
  140. 140.
    Wei L, Zhang W, Liu Z, Li Y (2009) AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol 9:138PubMedCrossRefGoogle Scholar
  141. 141.
    Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJS, Chen M, Wallar BJ, Alberts AS, Gundersen GG (2004) EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 6:820–830PubMedCrossRefGoogle Scholar
  142. 142.
    Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613PubMedCrossRefGoogle Scholar
  143. 143.
    Wightman R, Turner SR (2008) The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J 54:794–805PubMedCrossRefGoogle Scholar
  144. 144.
    Wittmann T, Waterman-Storer CM (2005) Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells. J Cell Biol 169:929–939PubMedCrossRefGoogle Scholar
  145. 145.
    Yasuhara H, Muraoka M, Shogaki H, Mori H, Sonobe S (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43:595–603PubMedCrossRefGoogle Scholar
  146. 146.
    Zanic M, Stear JH, Hyman AA, Howard J (2009) EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS One 4:e7585PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations