Advertisement

The Cytoskeleton and Root Growth Behavior

  • Laura M. Vaughn
  • Katherine L. Baldwin
  • Gengxiang Jia
  • Julian C. Verdonk
  • Allison K. Strohm
  • Patrick H. Masson
Chapter
Part of the Advances in Plant Biology book series (AIPB, volume 2)

Abstract

The roots of many plant species develop complex growth behaviors when germinated on hard surfaces, and scientists have learned to use this experimental set-up to study the structure and dynamics of cytoskeletal arrays. Our knowledge of the elements that lead to anisotropic cell expansion in rapidly elongating cells has increased by finding mutants with altered root growth behavior as well as observing how growth patterns change upon application of microtubule-interacting drugs. These studies have highlighted the importance of microtubule structure, microtubule-associated proteins, cell wall components, and various signaling pathways in governing a root’s shape. Here, we discuss the growth patterns roots display on hard surfaces and review several mutant studies where growth is aberrant. Many of the changes in root growth behavior can be linked directly to alterations in the placement or dynamics of the cytoskeleton, while others appear to have a more indirect impact. Observations of the growth patterns of these mutants may now be supplemented with information from studies utilizing natural variation to gain a fuller understanding of the molecular biology behind root morphology.

Keywords

Elongation Zone Microtubule Dynamic Cortical Microtubule Microtubule Array Pause State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This review was made possible by grants from the National Science Foundation (NSF grants IOS-0642865 and IOS-0821884 to PHM), the UW-Madison USDA Hatch program, the DOE Great Lakes Bioenergy Research Center and the UW-Madison Genetics Training Grant from the National Institutes of Health to LMV for her first 2 years in graduate school.

References

  1. 1.
    Abe T, Thitamadee S, Hashimoto T (2004) Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiol 45(2):211–220CrossRefPubMedGoogle Scholar
  2. 2.
    Houssain MA, Noh HN, Kim KI, Koh EJ, Wi SG, Bae HJ, Lee H, Hong, SW (2010) Mutation of the chitinase-like protein-encoding AtCTL2 gene enhances lignin accumulation in dark-grown Arabidopsis seedlings. J Plant Physiol 167(8):650–658Google Scholar
  3. 3.
    Ambrose J, Shoji T, Kotzer A, Pighin J, Wasteneys G (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19(9):2763–2775CrossRefPubMedGoogle Scholar
  4. 4.
    Ambrose J, Wasteneys G (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19(11):4730–4737CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson C, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796CrossRefPubMedGoogle Scholar
  6. 6.
    Baluska F, Volkmann D, Barlow P (1996) Specialized zones of development in roots: view from the cellular level. Plant Physiol 112:3–4PubMedGoogle Scholar
  7. 7.
    Baum S, Rost T (1996) Root apical organization in Arabidopsis thaliana 1. Root cap and protoderm. Protoplasma 192:178–188CrossRefGoogle Scholar
  8. 8.
    Benfey P, Linstead P, Roberts K, Schiefelbein J, Hauser M, Aeschbacher R (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70PubMedGoogle Scholar
  9. 9.
    Bichet A, Desnos T, Turner S, Grandjean O, Höfte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25(2):137–148CrossRefPubMedGoogle Scholar
  10. 10.
    Bisgrove S, Lee Y, Liu B, Peters N, Kropf D (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20(2):396–410CrossRefPubMedGoogle Scholar
  11. 11.
    Bouquin T, Mattsson O, Naested H, Foster R, Mundy J (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116(pt 5):791–801CrossRefPubMedGoogle Scholar
  12. 12.
    Brunet S, Sardon T, Zimmerman T, Wittmann T, Pepperkok R, Karsenti E, Vernos I (2004) Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol Biol Cell 15(12):5318–5328CrossRefPubMedGoogle Scholar
  13. 13.
    Buer C, Wasteneys G, Masle J (2003) Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol 132:1085–1096CrossRefPubMedGoogle Scholar
  14. 14.
    Burk D, Ye Z (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14(9):2145–2160CrossRefPubMedGoogle Scholar
  15. 15.
    Buschmann H, Fabri C, Hauptmann M, Hutzler P, Laux T, Lloyd C, Schäffner A (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14(16):1515–1521CrossRefPubMedGoogle Scholar
  16. 16.
    Buschmann H, Hauptmann M, Niessing D, Lloyd C, Schäffner A (2009) Helical growth of the Arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. Plant Cell 21(7):2090–2106CrossRefPubMedGoogle Scholar
  17. 17.
    Cassab G (2008) Chapter 6: Other tropisms and their relationship to gravitropism. In: Gilroy S, Masson P (eds) Plant tropisms. Blackwell, Ames, pp 123–140Google Scholar
  18. 18.
    Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson P (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95(25):15112–15117CrossRefPubMedGoogle Scholar
  19. 19.
    Chen Z, Noir S, Kwaaitaal M, Hartmann H, Wu M, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones A (2009) Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell 21(7):1972–1991CrossRefPubMedGoogle Scholar
  20. 20.
    Cosgrove D (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326CrossRefPubMedGoogle Scholar
  21. 21.
    Cyr R, Palevitz B (1995) Organization of cortical microtubules in plant cells. Curr Opin Cell Biol 7:65071CrossRefGoogle Scholar
  22. 22.
    Darwin C (1880) The power of movement in plants. John Murray, LondonGoogle Scholar
  23. 23.
    Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh S, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett M et al (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312(5777):1218–1220CrossRefPubMedGoogle Scholar
  24. 24.
    Fortunati A, Piconese S, Tassone P, Ferrari S, Migliaccio F (2008) A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor. J Exp Bot 59(6):1363–1374CrossRefPubMedGoogle Scholar
  25. 25.
    Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809PubMedGoogle Scholar
  26. 26.
    Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development 127(20):4443–4453PubMedGoogle Scholar
  27. 27.
    Gao X, Nagawa S, Wang G, Yang Z (2008) Cell polarity signaling: focus on polar auxin transport. Mol Plant 1(6):899–909CrossRefPubMedGoogle Scholar
  28. 28.
    Geldner N (2009) Cell polarity in plants: a perspective on PINs. Curr Opin Plant Biol 12(1):42–48CrossRefPubMedGoogle Scholar
  29. 29.
    Geldner N, Friml J, Stierhof Y, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413(6854):425–428CrossRefPubMedGoogle Scholar
  30. 30.
    Green P (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405CrossRefPubMedGoogle Scholar
  31. 31.
    Gutierrez R, Lindeboom J, Paredez A, Emons A, Ehrhardt D (2010) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11(7):797–808CrossRefGoogle Scholar
  32. 32.
    Harrison B, Morita M, Masson P, Tasaka M (2008) Chapter 2: Signal transduction in gravitropism. In: Gilroy S, Masson P (eds) Plant tropisms. Blackwell, Ames, pp 21–45Google Scholar
  33. 33.
    Hobe M, Müller R, Grünewald M, Brand U, Simon R (2003) Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol 213(8):371–381CrossRefPubMedGoogle Scholar
  34. 34.
    Hu Y, Zhong R, Wr M, Ye Z (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217(6):912–921CrossRefPubMedGoogle Scholar
  35. 35.
    Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007) Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci USA 104(20):8544–8549CrossRefPubMedGoogle Scholar
  36. 36.
    Ishikawa H, Evans M (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102:1203–1210PubMedGoogle Scholar
  37. 37.
    Ishikawa H, Evans M (1997) Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings. Plant Cell Environ 20:919–928CrossRefPubMedGoogle Scholar
  38. 38.
    Kato M, Nagasaki-Takeuchi N, Ide Y, Maeshima M (2010) An Arabidopsis hydrophilic Ca2(+) -binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol 51(3):366–379CrossRefPubMedGoogle Scholar
  39. 39.
    Mirza JI (1987) The effects of light and gravity on the horizontal curvature of roots of gravitropic and agravitropic Arabidopsis thaliana L. Plant Physiol 83(1):118–120CrossRefPubMedGoogle Scholar
  40. 40.
    Kawamura E, Wasteneys G (2008) MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci 121(pt 24):4114–4123CrossRefPubMedGoogle Scholar
  41. 41.
    Kirik V, Herrmann U, Parupalli C, Sedbrook J, Ehrhardt D, Hülskamp M (2007) CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci 120(pt 24):4416–4425CrossRefPubMedGoogle Scholar
  42. 42.
    Kleine-Vehn J, Langowski L, Wiśniewska J, Dhonukshe P, Brewer P, Friml J (2008) Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1(6):1056–1066CrossRefPubMedGoogle Scholar
  43. 43.
    Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18(11):3171–3181CrossRefPubMedGoogle Scholar
  44. 44.
    Korolev A, Buschmann H, Doonan J, Lloyd C (2007) AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J Cell Sci 120(pt 13):2241–2247CrossRefPubMedGoogle Scholar
  45. 45.
    Korolev A, Chan J, Naldrett M, Doonan J, Lloyd C (2005) Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells. Plant J 42(4):547–555CrossRefPubMedGoogle Scholar
  46. 46.
    Ledbetter M, Porter K (1963) A “microtubule” in plant cell fine structure. J Cell Bio 19:239–250CrossRefGoogle Scholar
  47. 47.
    Lewis D, Miller N, Splitt B, Wu G, Spalding E (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19(6):1838–1850CrossRefPubMedGoogle Scholar
  48. 48.
    Massa G, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445CrossRefPubMedGoogle Scholar
  49. 49.
    Migliaccio F, Piconese S (2001) Spiralizations and tropisms in Arabidopsis roots. Trends Plant Sci 6(12):561–565CrossRefPubMedGoogle Scholar
  50. 50.
    Mochizuki S, Harada A, Inada S, Sugimoto-Shirasu K, Stacey N, Wada T, Ishiguro S, Okada K, Sakai T (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. Plant Cell 17(2):537–547CrossRefPubMedGoogle Scholar
  51. 51.
    Monshausen G, Swanson S, Gilroy S (2008) Touch sensing and thigmotropism. In: Gilroy S, Masson P (eds) Plant tropisms. Blackwell, Ames, pp 91–122Google Scholar
  52. 52.
    Mullen J, Turk E, Johnson K, Wolverton C, Ishikawa H, Simmons C, Söll D, Evans M (1998) Root-growth behavior of the Arabidopsis mutant rgr1. Roles of gravitropism and circumnutation in the waving/coiling phenomenon. Plant Physiol 118(4):1139–1145CrossRefPubMedGoogle Scholar
  53. 53.
    Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16(5):1178–1190CrossRefPubMedGoogle Scholar
  54. 54.
    Nakajima K, Kawamura T, Hashimoto T (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol 47(4):513–522CrossRefPubMedGoogle Scholar
  55. 55.
    Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122(pt 13):2208–2217CrossRefPubMedGoogle Scholar
  56. 56.
    Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250(4978):274–276CrossRefPubMedGoogle Scholar
  57. 57.
    Oyama T, et al. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11(22):2983–2995CrossRefPubMedGoogle Scholar
  58. 58.
    Pandey S, Monshausen G, Ding L, Assmann S (2008) Regulation of root-wave response by extra large and conventional G proteins in Arabidopsis thaliana. Plant J 55(2):311–322CrossRefPubMedGoogle Scholar
  59. 59.
    Paredez A, Somerville C, Ehrhardt D (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495CrossRefPubMedGoogle Scholar
  60. 60.
    Paredez A, Persson S, Ehrhardt D, Somerville C (2010) Genetic evidence that cellulose synthase activity influences cortical microtubule array organization. Plant Physiol 147:1723–1734CrossRefGoogle Scholar
  61. 61.
    Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard J, Schmit A, Guerche P, Bouchez D (2006) Gamma-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18(6):1412–1425CrossRefPubMedGoogle Scholar
  62. 62.
    Perrin R, Wang Y, Yuen C, Will J, Masson P (2007) WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J 49(6):961–971CrossRefPubMedGoogle Scholar
  63. 63.
    Petrásek J, Schwarzerová K (2009) Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol 12(6):728–734CrossRefPubMedGoogle Scholar
  64. 64.
    Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor E, Baskin T (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50(3):514–528CrossRefPubMedGoogle Scholar
  65. 65.
    Rayle D, Cleland R (1992) The Acid Growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99(4):1271–1274CrossRefPubMedGoogle Scholar
  66. 66.
    Roudier F, Fernandez A, Fujita M, Himmelspach R, Borner G, Schindelman G, Song S, Baskin T, Dupree P, Wasteneys G et al (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17(6):1749–1763CrossRefPubMedGoogle Scholar
  67. 67.
    Rutherford R, Gallois P, Masson P (1998) Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces. Plant J 16(2):145–154CrossRefPubMedGoogle Scholar
  68. 68.
    Rutherford R, Masson P (1996) Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector. Plant Physiol 111(4):987–998CrossRefPubMedGoogle Scholar
  69. 69.
    Santner A, Watson J (2006) The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J 45(5):752–764CrossRefPubMedGoogle Scholar
  70. 70.
    Schindelman G, Morikami A, Jung J, Baskin T, Carpita N, Derbyshire P, McCann M, Benfey P (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15(9):1115–1127CrossRefPubMedGoogle Scholar
  71. 71.
    Sedbrook J, Carroll K, Hung K, Masson P, Somerville C (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14(7):1635–1648CrossRefPubMedGoogle Scholar
  72. 72.
    Sedbrook J, Ehrhardt D, Fisher S, Scheible W, Somerville C (2004) The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16(6):1506–1520CrossRefPubMedGoogle Scholar
  73. 73.
    Shoji T, Narita N, Hayashi K, Asada J, Hamada T, Sonobe S, Nakajima K, Hashimoto T (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136(4):3933–3944CrossRefPubMedGoogle Scholar
  74. 74.
    Simmons C, Migliaccio F, Masson P, Caspar T, Soll D (1995) A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. Physiol Plant 93:790–798CrossRefPubMedGoogle Scholar
  75. 75.
    Simmons C, Soll D, Migliaccio F (1996) Circumnutation and gravitropism cause root waving in Arabidopsis thaliana. J Exp Bot 46:143–150CrossRefGoogle Scholar
  76. 76.
    Stoppin-Mellet V, Gaillard J, Vantard M (2002) Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem J 365(pt 2):337–342PubMedGoogle Scholar
  77. 77.
    Stoppin-Mellet V, Gaillard J, Vantard M (2006) Katanin’s severing activity favors bundling of cortical microtubules in plants. Plant J 46(6):1009–1017CrossRefPubMedGoogle Scholar
  78. 78.
    Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132:805–810CrossRefPubMedGoogle Scholar
  79. 79.
    Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417(6885):193–196CrossRefPubMedGoogle Scholar
  80. 80.
    Thompson M, Holbrook N (2004) Root-gel interactions and the root waving behavior of Arabidopsis. Plant Physiol 135(3):1822–1837CrossRefPubMedGoogle Scholar
  81. 81.
    Wang X, Zhu L, Liu B, Wang C, Jin L, Zhao Q, Yuan M (2007) Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19(3):877–889CrossRefPubMedGoogle Scholar
  82. 82.
    Wasteneys G (2004) Progress in understanding the role of microtubules in plant cells. Curr Poin Plant Biol 7:651–660CrossRefGoogle Scholar
  83. 83.
    Wasteneys G, Collings D (2004) Expanding beyond the great divide: the cytoskeleton and axial growth. In: Hussey P (ed) The plant cytoskeleton in cell differentiation and development. Blackwell, Oxford, pp 83–115Google Scholar
  84. 84.
    Wasteneys G, Ambrose J (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19(2):62–71CrossRefPubMedGoogle Scholar
  85. 85.
    Webb M, Jouannic S, Foreman J, Linstead P, Dolan L (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3–a katanin-p60 protein. Development 129(1):123–131PubMedGoogle Scholar
  86. 86.
    Whittington A, Vugrek O, Wei K, Hasenbein N, Sugimoto K, Rashbrooke M, Wasteneys G (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411(6837):610–613CrossRefPubMedGoogle Scholar
  87. 87.
    Wightman R, Turner S (2007) Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J 52(4):742–751CrossRefPubMedGoogle Scholar
  88. 88.
    Williamson R (1991) Orientation of cortical microtubules in interphase plant cells. Int Rev Cytol 129:135–206CrossRefGoogle Scholar
  89. 89.
    Wu G, Lewis D, Spalding E (2007) Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19(6):1826–1837CrossRefPubMedGoogle Scholar
  90. 90.
    Yao M, Wakamatsu Y, Itoh T, Shoji T, Hashimoto T (2008) Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J Cell Sci 121(pt 14):2372–2381CrossRefPubMedGoogle Scholar
  91. 91.
    Yuen C, Pearlman R, Silo-Suh L, Hilson P, Carroll K, Masson P (2003) WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol 131(2):493–506CrossRefPubMedGoogle Scholar
  92. 92.
    Yuen C, Sedbrook J, Perrin R, Carroll K, Masson P (2005) Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant Physiol 138(2):701–714CrossRefPubMedGoogle Scholar
  93. 93.
    Zheng H, Kunst L, Hawes C, Moore I (2004) A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant J 37(3):398–414CrossRefPubMedGoogle Scholar
  94. 94.
    Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119(1):71–84Google Scholar
  95. 95.
    Szymanski DB (2009) Plant cells taking shape: new insights into cytoplasmic control. Curr Opin Plant Biol 12(6):735–744Google Scholar
  96. 96.
    Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215(1–4):150–171Google Scholar
  97. 97.
    Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124(4):1493–1506Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Laura M. Vaughn
  • Katherine L. Baldwin
  • Gengxiang Jia
  • Julian C. Verdonk
  • Allison K. Strohm
  • Patrick H. Masson
    • 1
  1. 1.Department of GeneticsUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations