Microtubule and Cell Shape Determination

  • Takashi Hashimoto
Part of the Advances in Plant Biology book series (AIPB, volume 2)


The ordered organization of cortical microtubules promotes directional expansion of plant cells, and thus is a critical determinant of cell shape. Changes in cell shape in turn lead to the positional differences of the mechanical stress, which may align cortical microtubules. A large fraction of morphological mutants with altered cell shapes are caused by defects in organization of cortical arrays, and by mutations in various microtubule regulators. Twisted growth with fixed handedness is an intriguing anisotropic growth pattern in which cortical arrays are arranged in either right- or left-handed shallow helices. Possible molecular mechanisms for helical growth are discussed.


Epidermal Cell Anisotropic Growth Cortical Array Discordant Orientation Helical Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abe T, Hashimoto T (2005) Altered microtubule dynamics by expression of modified α-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants. Plant J 43:191–204CrossRefPubMedGoogle Scholar
  2. 2.
    Akashi T, Izumi K, Nagano E, Enomoto M, Mizuno K, Shibaoka H (1988) Effects of propyzamide on tobacco cell microtubules in vivo and in vitro. Plant Cell Physiol 29:1053–1062Google Scholar
  3. 3.
    Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19:4730–4737CrossRefPubMedGoogle Scholar
  4. 4.
    Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol 35:935–942PubMedGoogle Scholar
  5. 5.
    Bisgrove SR, Lee Y-RJ, Liu B, Peters NT, Kropf DL (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20:396–410CrossRefPubMedGoogle Scholar
  6. 6.
    Bouchet-Marquis C, Zuber B, Glynn A-M, Eltsov M, Grabenbauer M, Goldie KN, Thomas D, Frangakis AS, Dubochet J, Chrétien D (2007) Visualization of cell microtubules in their native state. Biol Cell 99:45–53CrossRefPubMedGoogle Scholar
  7. 7.
    Burk DH, Liu B, Zhong R, Morrison WH, Ye Z (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–827CrossRefPubMedGoogle Scholar
  8. 8.
    Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schäffner AR (2009) Helical growth of the Arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. Plant Cell 21:2090–2106CrossRefPubMedGoogle Scholar
  9. 9.
    Carland FM, McHale NA (1996) LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122:1811–1819PubMedGoogle Scholar
  10. 10.
    Chrétien D, Fuller SD (2000) Microtubules switch occasionally into unfavorable configurations during elongation. J Mol Biol 298:663–676CrossRefPubMedGoogle Scholar
  11. 11.
    Chrétien D, Wade RH (1991) New data on the microtubule surface lattice. Biol Cell 71:161–174CrossRefPubMedGoogle Scholar
  12. 12.
    Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, Malenica N, Luschnig C, Tietz O, Ditengou F, Palme K, Azmi A, Prinsen E, van Lijsebettens M (2006) The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell 18:852–866CrossRefPubMedGoogle Scholar
  13. 13.
    Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, Couder Y (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci USA 106:8453–8458CrossRefPubMedGoogle Scholar
  14. 14.
    Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Poüs C, Perez F (2008) Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322:1353–1356CrossRefPubMedGoogle Scholar
  15. 15.
    Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1989) Computer-aided 3-D reconstruction of interphase microtubules in epidermal cells of Datura stramonium reveals principles of array assembly. Development 106:531–541Google Scholar
  16. 16.
    Frei E, Preston RD (1961) Cell wall organization and wall growth in the filamentous green algae Cladophora and Chaetomorpha II. Proc R Soc Lond B 155:55–77CrossRefGoogle Scholar
  17. 17.
    Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development 127:4443–4453PubMedGoogle Scholar
  18. 18.
    Geitmann A, Ortega JKE (2009) Mechanisms and modeling of plant cell growth. Trends Plant Sci 14:467–478CrossRefPubMedGoogle Scholar
  19. 19.
    des Georges A, Katsuki M, Drummond DR, Osei M, Cross RA, Amos LA (2008) Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nature Struct Mol Biol 15:1102–1108CrossRefGoogle Scholar
  20. 20.
    Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerwitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655CrossRefPubMedGoogle Scholar
  21. 21.
    Hasezawa S, Hogetsu T, Syono K (1988) Rearrangement of cortical microtubules in elongating cells derived from tobacco protoplasts. J Plant Physiol 133:46–51Google Scholar
  22. 22.
    Hashimoto T (2002) Molecular genetic analysis of left-right handedness in plants. Philos Trans R Soc Lond B Biol Sci 357:799–808CrossRefPubMedGoogle Scholar
  23. 23.
    Hugdahl JD, Morejohn LC (1993) Rapid and reversible high-affinity binding of the dinitroaniline herbicide oryzalin to tubulin from Zea mays L. Plant Physiol 102:725–740PubMedGoogle Scholar
  24. 24.
    Ishida T, Hashimoto T (2007) An Arabidopsis thaliana tubulin mutant with conditional root-skewing phenotype. J Plant Res 120:635–640CrossRefPubMedGoogle Scholar
  25. 25.
    Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007) Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:8544–8549CrossRefPubMedGoogle Scholar
  26. 26.
    Ishida T, Thitamadee S, Hashimoto T (2007) Twisted growth and organization of cortical microtubules. J Plant Res 120:61–70CrossRefPubMedGoogle Scholar
  27. 27.
    Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld J (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276CrossRefPubMedGoogle Scholar
  28. 28.
    Kirik V, Grini PE, Mathur J, Klinkhammer I, Adler K, Bechtold N, Herzog M, Bonneville J-M, Hülskamp M (2002) The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the α/β-tubulin monomer balance. Plant Cell 14:2265–2276CrossRefPubMedGoogle Scholar
  29. 29.
    Komaki S, Abe T, Coutuer S, Inzé D, Russinova E, Hashimoto T (2010) Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J Cell Sci 123:451–459CrossRefPubMedGoogle Scholar
  30. 30.
    Korolev AV, Buschmann H, Doonan JH, Lloyd CW (2007) AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J Cell Sci 120:2241–2247CrossRefPubMedGoogle Scholar
  31. 31.
    Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250CrossRefPubMedGoogle Scholar
  32. 32.
    Ledbetter MC, Porter KR (1964) Morphology of microtubules of plant cells. Science 144:872–874CrossRefPubMedGoogle Scholar
  33. 33.
    Liang BM, Dennings AM, Sharp RE, Baskin TI (1996) Consistent handedness of microtubule helical arrays in maize and Arabidopsis primary roots. Protoplasma 190:8–15CrossRefGoogle Scholar
  34. 34.
    Lloyd CW (1983) Helical microtubular arrays in onion root hairs. Nature 305:311–313CrossRefPubMedGoogle Scholar
  35. 35.
    Lloyd CW (1984) Toward a dynamic helical model for the influence of microtubules on wall patterns in plants. Int Rev Cytol 86:1–51CrossRefGoogle Scholar
  36. 36.
    Lloyd CW, Chan J (2002) Helical microtubule arrays and spiral growth. Plant Cell 14:2319–2324CrossRefPubMedGoogle Scholar
  37. 37.
    Morejohn LC (1991) The molecular pharmacology of plant tubulin and microtubules. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 29–43Google Scholar
  38. 38.
    Morejohn LC, Fosket DE (1984) Inhibition of plant microtubule polymerization in vitro by the phosphoric amide herbicide amiprophos-methyl. Science 224:874–876CrossRefPubMedGoogle Scholar
  39. 39.
    Murata T, Hasebe M (2010) Microtubule nucleation and organization in plant cells. In: Liu B (ed) The Plant Cytoskeleton, pp. 81–94. Springer, New YorkGoogle Scholar
  40. 40.
    Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190CrossRefPubMedGoogle Scholar
  41. 41.
    Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis γ-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122:2208–2217CrossRefPubMedGoogle Scholar
  42. 42.
    Nakamura M, Naoi K, Shoji T, Hashimoto T (2004) Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol 45:1330–1334CrossRefPubMedGoogle Scholar
  43. 43.
    Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96:79–88CrossRefPubMedGoogle Scholar
  44. 44.
    Pérez-Pérez JM, Ponce MR, Micol JL (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 134:101–107CrossRefPubMedGoogle Scholar
  45. 45.
    Probine MC (1963) Cell growth and the structure and mechanical properties of the wall in internodal cells of Nitella opaca. III. Spiral growth and cell wall structure. J Exp Bot 14:101–113CrossRefGoogle Scholar
  46. 46.
    Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202CrossRefPubMedGoogle Scholar
  47. 47.
    Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible W, Somerville CR (2004) The Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16:1506–1520CrossRefPubMedGoogle Scholar
  48. 48.
    Sedbrook JC, Kaloriti D (2008) Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci 13:303–310CrossRefPubMedGoogle Scholar
  49. 49.
    Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124:1493–1506CrossRefPubMedGoogle Scholar
  50. 50.
    Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196CrossRefPubMedGoogle Scholar
  51. 51.
    Vaughn KC (2000) Anticytoskeletal herbicides. In: Nick P (ed) Plant microtubules. Springer, Berlin, pp 193–205Google Scholar
  52. 52.
    Vitre B, Coquelle FM, Heichette C, Garnier C, Chrétien D, Arnal I (2008) EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 10:415–421CrossRefPubMedGoogle Scholar
  53. 53.
    Wade RH, Chrétien D (1990) Characterization of microtubule protofilament numbers. J Mol Biol 212:775–786CrossRefPubMedGoogle Scholar
  54. 54.
    Williamson RE (1991) Orientation of cortical microtubules in interphase plant cells. Int Rev Cytol 129:135–206CrossRefGoogle Scholar
  55. 55.
    Yao M, Wakamatsu Y, Itoh TJ, Shoji T, Hashimoto T (2008) Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J Cell Sci 121:2372–2381CrossRefPubMedGoogle Scholar
  56. 56.
    Young DH, Lewandowski VT (2000) Covalent binding of the benzamide RH-4032 to tubulin in suspension-cultured tobacco cells and its application in a cell-based competitive-binding assay. Plant Physiol 124:115–124CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations