Signaling to the Cytoskeleton in Diffuse Cell Growth

  • Ying Fu
  • Zhenbiao Yang
Part of the Advances in Plant Biology book series (AIPB, volume 2)


Non-mobile plant cells must expand to achieve its final shape. Polarized diffuse growth is a common mode of cell expansion adopted by most plant cells, in which cell membrane expansion occurs throughout the entire cell surface while the direction of cell expansion is spatially controlled by localized changes in cell wall extensibility. Although the mechanisms underlying these changes are not clear, it is generally surmised that these changes are modulated by the reorganization and dynamics of the cytoskeleton in responses to growth signals. During plant development, endogenous developmental signals such as mechanical forces and plant hormones are proposed to regulate the cytoskeleton by signaling to cytoskeleton-associated proteins. In this review, we summarize known endogenous developmental signals and their signaling pathways in the control of cytoskeletal re-organization and dynamics that impinge upon polarized diffuse cell growth.


Pollen Tube Root Hair Wave Complex Diffuse Growth Azuki Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedCrossRefGoogle Scholar
  2. 2.
    Baskin TI, Wilson JE (1997) Inhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules. Plant Physiol 113:493–502PubMedCrossRefGoogle Scholar
  3. 3.
    Basu D, El-Assal Sel D, Le J, Mallery EL, Szymanski DB (2004) Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131:4345–4355PubMedCrossRefGoogle Scholar
  4. 4.
    Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB (2008) A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci USA 105:4044–4049PubMedCrossRefGoogle Scholar
  5. 5.
    Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500PubMedCrossRefGoogle Scholar
  6. 6.
    Bouquin T, Mattsson O, Naested H, Foster R, Mundy J (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116:791–801PubMedCrossRefGoogle Scholar
  7. 7.
    Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389PubMedCrossRefGoogle Scholar
  8. 8.
    Brembu T, Winge P, Bones AM (2005) Catching the WAVEs of plant actin regulation. J Plant Growth Regul 24:55–66CrossRefGoogle Scholar
  9. 9.
    Brembu T, Winge P, Seem M, Bones AM (2004) NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16:2335–2349PubMedCrossRefGoogle Scholar
  10. 10.
    Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396PubMedCrossRefGoogle Scholar
  11. 11.
    Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845PubMedCrossRefGoogle Scholar
  12. 12.
    Campanoni P, Nick P (2005) Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2, 4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137:939–948PubMedCrossRefGoogle Scholar
  13. 13.
    Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta 212:673–683PubMedCrossRefGoogle Scholar
  14. 14.
    Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I.Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the delta 7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta 212:659–672PubMedCrossRefGoogle Scholar
  15. 15.
    Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1–13PubMedCrossRefGoogle Scholar
  16. 16.
    Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572PubMedCrossRefGoogle Scholar
  17. 17.
    Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KL, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K (2006) The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 18:3058–3072PubMedCrossRefGoogle Scholar
  18. 18.
    Collett CE, Harberd NP, Leyser O (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–562PubMedCrossRefGoogle Scholar
  19. 19.
    Deeks MJ, Hussey PJ (2005) Arp2/3 and SCAR: plants move to the fore. Nat Rev Mol Cell Biol 6:954–964PubMedCrossRefGoogle Scholar
  20. 20.
    Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G (2005) Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 62:955–970PubMedCrossRefGoogle Scholar
  21. 21.
    Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG (2006) BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133:1091–1100PubMedCrossRefGoogle Scholar
  22. 22.
    Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346PubMedCrossRefGoogle Scholar
  23. 23.
    Dugardeyn J, Vandenbussche F, Van Der Straeten D (2008) To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis? J Exp Bot 59:1–16PubMedCrossRefGoogle Scholar
  24. 24.
    Dumais J (2009) Plant morphogenesis: a role for mechanical signals. Curr Biol 19:R207–R208PubMedCrossRefGoogle Scholar
  25. 25.
    Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793PubMedCrossRefGoogle Scholar
  26. 26.
    El-Din El-Assal S, Le J, Basu D, Mallery EL, Szymanski DB (2004) DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J 38:526–538PubMedCrossRefGoogle Scholar
  27. 27.
    Etienne-Manneville S (2004) Actin and microtubules in cell motility: which one is in control? Traffic 5:470–477PubMedCrossRefGoogle Scholar
  28. 28.
    Fu Y (2010) ROP GTPases and the cytoskeleton. In: Yalovsky S (ed) Integrated G proteins signaling in plants. Springer, BerlinGoogle Scholar
  29. 29.
    Fu Y (2010) The actin cytoskeleton and signaling network during pollen tube tip growth. J Integr Plant Biol 52(2):131–137PubMedCrossRefGoogle Scholar
  30. 30.
    Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14:777–794PubMedCrossRefGoogle Scholar
  31. 31.
    Fu Y, Kawasaki T, Shimamoto K, Yang Z (2008) ROP/RAC GTPases. In: Yang Z (ed) Intracellular signaling in plants. Wiley-Blackwell, Hoboken, pp 64–99CrossRefGoogle Scholar
  32. 32.
    Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700PubMedCrossRefGoogle Scholar
  33. 33.
    Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832PubMedCrossRefGoogle Scholar
  34. 34.
    Fujino K, Koda Y, Kikuta Y (1995) Reorientation of cortical microtubules in the sub-apical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol 36:891–895Google Scholar
  35. 35.
    Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138PubMedCrossRefGoogle Scholar
  36. 36.
    Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655PubMedCrossRefGoogle Scholar
  37. 37.
    Hashimoto T, Kato T (2006) Cortical control of plant microtubules. Curr Opin Plant Biol 9:5–11PubMedCrossRefGoogle Scholar
  38. 38.
    Holweg C, Susslin C, Nick P (2004) Capturing in vivo dynamics of the actin cytoskeleton stimulated by auxin or light. Plant Cell Physiol 45:855–863PubMedCrossRefGoogle Scholar
  39. 39.
    Hussey P, Hashimoto T (2008) The cytoskeleton and signal transduction: role and regulation of plant actin- and microtubule-binding proteins. In: Yang Z (ed) Intracellular signaling in plants. Wiley-Blackwell, Hoboken, pp 244–272CrossRefGoogle Scholar
  40. 40.
    Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924PubMedCrossRefGoogle Scholar
  41. 41.
    Hwang JU, Gu Y, Lee YJ, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399PubMedCrossRefGoogle Scholar
  42. 42.
    Kandasamy MK, Gilliland LU, McKinney EC, Meagher RB (2001) One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13:1541–1554PubMedCrossRefGoogle Scholar
  43. 43.
    Kleine-Vehn J, Langowski L, Wisniewska J, Dhonukshe P, Brewer PB, Friml J (2008) Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1:1056–1066PubMedCrossRefGoogle Scholar
  44. 44.
    Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S (2007) A Novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 17:947–952PubMedCrossRefGoogle Scholar
  45. 45.
    Lee YJ, Yang Z (2008) Tip growth: signaling in the apical dome. Curr Opin Plant Biol 11:662–671PubMedCrossRefGoogle Scholar
  46. 46.
    Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168PubMedCrossRefGoogle Scholar
  47. 47.
    Li H, Yang Z (2000) Rho GTPases and the Actin Cytoskeleton. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Dordrecht, Kluwer, pp 301–321Google Scholar
  48. 48.
    Lipka V, Panstruga R (2005) Dynamic cellular responses in plant-microbe interactions. Curr Opin Plant Biol 8:625–631PubMedCrossRefGoogle Scholar
  49. 49.
    Lodish H, Berk A, Kaiser C, Krieger M, Scott M, Bretscher A, Ploegh H, Matsudaira P (2007) Molecular cell biology. W.H. Freeman, New YorkGoogle Scholar
  50. 50.
    Malho R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A (2006) Signalling pathways in pollen germination and tube growth. Protoplasma 228:21–30PubMedCrossRefGoogle Scholar
  51. 51.
    Mao G, Chan J, Calder G, Doonan JH, Lloyd CW (2005) Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J 43:469–478PubMedCrossRefGoogle Scholar
  52. 52.
    Mathur J (2004) Cell shape development in plants. Trends Plant Sci 9:583–590PubMedCrossRefGoogle Scholar
  53. 53.
    Mathur J, Spielhofer P, Kost B, Chua N (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126:5559–5568PubMedGoogle Scholar
  54. 54.
    Mathur J, Mathur N, Kernebeck B, Hulskamp M (2003) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–1645PubMedCrossRefGoogle Scholar
  55. 55.
    Mayumi K, Shibaoka H (1995) A possible double role for Brassinolide in the reorientation of cortical microtubules in the epidermal cells of azuki bean epicotyls. Plant Cell Physiol 36:173–181Google Scholar
  56. 56.
    Meier C, Bouquin T, Nielsen ME, Raventos D, Mattsson O, Rocher A, Schomburg F, Amasino RM, Mundy J (2001) Gibberellin response mutants identified by luciferase imaging. Plant J 25:509–519PubMedCrossRefGoogle Scholar
  57. 57.
    Mita T, Shibaoka H (1984) Gibberellin stabilizes microtubules in onion leaf sheath cells. Protoplasma 119:100–109CrossRefGoogle Scholar
  58. 58.
    Mita T, Katsumi M (1986) Gibberellin control of microtubule arrangement in the mesocotyl epidermal cells of the d 5 mutant of Zea mays L. Plant Cell Physiol 24:109–117Google Scholar
  59. 59.
    Mizuno K (1994) Inhibition of gibberellin-induced elongation, reorientation of cortical microtubules and change of isoform of tubulin in epicotyl segments of azuki bean by protein kinase inhibitors. Plant Cell Physiol 35:1149–1157Google Scholar
  60. 60.
    Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14:293–299PubMedCrossRefGoogle Scholar
  61. 61.
    Muller S, Wright AJ, Smith LG (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19:180–188PubMedCrossRefGoogle Scholar
  62. 62.
    Naoi K, Hashimoto T (2004) A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16:1841–1853PubMedCrossRefGoogle Scholar
  63. 63.
    Nick P, Schafer E, Furuya M (1992) Auxin redistribution during first positive phototropism in corn coleoptiles: microtubule reorientation and the Cholodny–Went theory. Plant Physiol 99:1302–1308PubMedCrossRefGoogle Scholar
  64. 64.
    Nick P, Han MJ, An G (2009) Auxin stimulates its own transport by shaping actin filaments. Plant Physiol 151:155–167PubMedCrossRefGoogle Scholar
  65. 65.
    Plett JM, Mathur J, Regan S (2009) Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J Exp Bot 60:3923–3933PubMedCrossRefGoogle Scholar
  66. 66.
    Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465PubMedCrossRefGoogle Scholar
  67. 67.
    Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14:101–118PubMedCrossRefGoogle Scholar
  68. 68.
    Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528PubMedCrossRefGoogle Scholar
  69. 69.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709PubMedCrossRefGoogle Scholar
  70. 70.
    Rosales-Nieves AE, Johndrow JE, Keller LC, Magie CR, Pinto-Santini DM, Parkhurst SM (2006) Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat Cell Biol 8:367–376PubMedCrossRefGoogle Scholar
  71. 71.
    Sakoda M, Hasegawa K, Ishizuka K (1992) Mode of action of natural growth inhibitors in radish hypocotyl elongation-influence of raphanusanin on auxin-induced microtubule orientation. Physiol Plant 84:509–513CrossRefGoogle Scholar
  72. 72.
    Sasabe M, Machida Y (2006) MAP65: a bridge linking a MAP kinase to microtubule turnover. Curr Opin Plant Biol 9:563–570PubMedCrossRefGoogle Scholar
  73. 73.
    Sasabe M, Machida Y (2008) Signaling by protein phosphorylation in cell division. In: Yang Z (ed) Intracellular signaling in plants. Wiley-Blackwell, Hoboken, pp 64–99Google Scholar
  74. 74.
    Sato M, Tsutsumi M, Ohtsubo A, Nishii K, Kuwabara A, Nagata T (2008) Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (Onagraceae). Planta 228:27–36PubMedCrossRefGoogle Scholar
  75. 75.
    Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609PubMedCrossRefGoogle Scholar
  76. 76.
    Shibaoka H (1993) Regulation by gibberellins of the orientation of cortical microtubules in plant cells. Aust J Plant Physiol 20:461–470CrossRefGoogle Scholar
  77. 77.
    Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168PubMedCrossRefGoogle Scholar
  78. 78.
    Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS (2006) Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet 2:e202PubMedCrossRefGoogle Scholar
  79. 79.
    Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753PubMedCrossRefGoogle Scholar
  80. 80.
    Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20:3346–3358PubMedCrossRefGoogle Scholar
  81. 81.
    Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119:3227–3237PubMedCrossRefGoogle Scholar
  82. 82.
    Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047PubMedCrossRefGoogle Scholar
  83. 83.
    Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295PubMedCrossRefGoogle Scholar
  84. 84.
    Stoppin-Mellet V, Gaillard J, Vantard M (2006) Katanin’s severing activity favors bundling of cortical microtubules in plants. Plant J 46:1009–1017PubMedCrossRefGoogle Scholar
  85. 85.
    Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK (2009) PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol 150:722–735PubMedCrossRefGoogle Scholar
  86. 86.
    Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–112PubMedCrossRefGoogle Scholar
  87. 87.
    Szymanski DB, Marks MD, Wick SM (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11:2331–2347PubMedCrossRefGoogle Scholar
  88. 88.
    Takahashi H, Kawahara A, Inoue Y (2003) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol 44:932–940PubMedCrossRefGoogle Scholar
  89. 89.
    Takesue K, Shibaoka H (1999) Auxin-induced longitudinal-to-transverse reorientation of cortical microtubules in nonelongating epidermal cells of azuki bean epidotyls. Protoplasma 206:27–30CrossRefGoogle Scholar
  90. 90.
    Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, Uhrig S, Rambke C, Hussey PJ, Hulskamp M (2007) The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134:967–977PubMedCrossRefGoogle Scholar
  91. 91.
    Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136:3956–3967PubMedCrossRefGoogle Scholar
  92. 92.
    Vandenbussche F, Verbelen JP, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. Bioessays 27:275–284PubMedCrossRefGoogle Scholar
  93. 93.
    Waller F, Riemann M, Nick P (2002) A role for actin-driven secretion in auxin-induced growth. Protoplasma 219:72–81PubMedCrossRefGoogle Scholar
  94. 94.
    Wang C, Li J, Yuan M (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48:1534–1547PubMedCrossRefGoogle Scholar
  95. 95.
    Wang QY, Nick P (1998) The auxin response of actin is altered in the rice mutant Yin-Yang. Protoplasma 204:22–33PubMedCrossRefGoogle Scholar
  96. 96.
    Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573PubMedCrossRefGoogle Scholar
  97. 97.
    Wasteneys GO (2000) The cytoskeleton and growth polarity. Curr Opin Plant Biol 3:503–511PubMedCrossRefGoogle Scholar
  98. 98.
    Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722PubMedCrossRefGoogle Scholar
  99. 99.
    Wenzel CL, Williamson RE, Wasteneys GO (2000) Gibberellin-induced changes in growth anisotropy precede gibberellin-dependent changes in cortical microtubule orientation in developing epidermal cells of barley leaves. Kinematic and cytological studies on a gibberellin-responsive dwarf mutant, M489. Plant Physiol 124:813–822PubMedCrossRefGoogle Scholar
  100. 100.
    Wightman R, Turner SR (2007) Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J 52:742–751PubMedCrossRefGoogle Scholar
  101. 101.
    Wightman R, Turner SR (2008) A novel mechanism important for the alignment of microtubules. Plant Signal Behav 3:238–239PubMedCrossRefGoogle Scholar
  102. 102.
    Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317PubMedCrossRefGoogle Scholar
  103. 103.
    Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–2856PubMedCrossRefGoogle Scholar
  104. 104.
    Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430PubMedGoogle Scholar
  105. 105.
    Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell doi:10.1016/j.cell.2010.09.003Google Scholar
  106. 106.
    Yang Z (2008) Cell polarity signaling in Arabidopsis. Annu Rev Cell Dev Biol 24:551–575PubMedCrossRefGoogle Scholar
  107. 107.
    Zandomeni K, Schopfer P (1993) Reorientation of microtubules at the outer epidermal wall of maize coleoptiles by phytochrome, blue-light photoreceptor and auxin. Protoplasma 173:103–112CrossRefGoogle Scholar
  108. 108.
    Zheng ZL, Yang Z (2000) The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 44:1–9PubMedCrossRefGoogle Scholar
  109. 109.
    Zimmermann I, Saedler R, Mutondo M, Hulskamp M (2004) The Arabidopsis GNARLED gene encodes the NAP125 homolog and controls several actin-based cell shape changes. Mol Genet Genomics 272:290–296PubMedCrossRefGoogle Scholar
  110. 110.
    Wasteneys GO, Yang Z (2004) The cytoskeleton becomes multidisciplinary. Plant Physiol 136:3853–3854Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations