Advertisement

Polymeric Microelectromechanical Millimeter Wave Systems

  • Yiin-Kuen Fuh
  • Firas Sammoura
  • Yingqi Jiang
  • Liwei Lin
Chapter

Abstract

Polymeric millimeter-wave components and systems based on micro molding technologies have been demonstrated, including waveguides, iris filters, tunable filters, phase shifters, waveguide-fed horn antennas and waveguide-based feeding networks. Fundamental issues in polymer metallization process such as conformal and uniform deposition as well as mass transfer and current density effects on the novel in-channel electroplating encapsulation, surface morphology and roughness on mm-wave attenuation will be discussed in detail. We believe this new class of polymeric millimeter-wave systems has potential applications in replacing the expensive metallic counterparts (a few thousand dollars for each waveguide) in current millimeter-wave systems.

Keywords

Seed Layer Insertion Loss Return Loss Rectangular Waveguide Mold Insert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Gaucher, B. Floyd, S. Reynolds, U. Pfeiffer, J. Grzyb, A. Joseph, E. Mina, B. Orner, H. Ding, R. Wachnik, and K. Walter, “Silicon germanium based millimetre-wave ICs for Gbps wireless communications and radar systems,” Semiconductor Science and Technology, vol. 22, no. 1, pp. S236–S243, 2007.CrossRefGoogle Scholar
  2. 2.
    T. Zwick, D. Liu, B. Gaucher, “Broadband planar superstrate antenna for integrated mmWave transceivers,” IEEE Trans. Antennas and Propagation, vol. 54, no. 10, pp. 2790–2796, 2006.CrossRefGoogle Scholar
  3. 3.
    U. R. Pfeiffer, J. Grzyb, D. Liu, B. Gaucher, T. Beukema, B. A. Floyd, and S. K. Reynolds, “A chip-scale packaging technology for 60-GHz wireless chipsets,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, no. 8, pp. 3387–3397, August 2006.CrossRefGoogle Scholar
  4. 4.
  5. 5.
    U. Pfeiffer and A. Valdes-Garcia, “Millimeter-wave design considerations for power amplifiers in a SiGe process technology,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, no. 1, pp. 57–64, January 2006.CrossRefGoogle Scholar
  6. 6.
    K. Honda, K. Yoneda, and K. Yamane, “76 GHz millimeter wave automobile radar using single chip MMIC,” FUJITSU TEN TECH J. NO, 30, pp. 61–63, 2008.Google Scholar
  7. 7.
    S. Yamano et al., “Development of 76 GHz millimeter-wave radar for rear short range,” FUJITSU TEN TECH J. NO, 23, pp. 12–19, 2004.Google Scholar
  8. 8.
    R. Appleby et al., “Mechanically scanned real time passive millimeter wave imaging at 94 GHz,” Proceedings of SPIE. Vol. 5077, 2003Google Scholar
  9. 9.
    R. Appleby et al., “The design of a real time 94 GHz passive millimeter wave imager for helicopter operations,” Proceedings of SPIE. Vol. 5619, 2004.Google Scholar
  10. 10.
  11. 11.
    http://www.isi.edu/efab. Accessed on February 12.
  12. 12.
    L.W. Pan and L. Lin, “Batch transfer of LIGA microstructures by selective electroplating and bonding,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 10, pp. 25–32, 2001.CrossRefGoogle Scholar
  13. 13.
    W.R. McGrath, C. Walker, M. Yap, and Y.C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies” Microwave Guided and Wave Letters, vol. 3, no. 3, pp. 61–63, 1999.Google Scholar
  14. 14.
    J.A. Wright, S. Tacic-Lucic, Y.C. Tai, W.R. McGrath, B. Bumble, and H. LeDuc, “Integrated silicon micromachined waveguide circuits for submillimeter wave applications”, Symposium Proceedings: Sixth International Symposium on Space Tetrahertz Technology, March, Pasedena, CA, pp. 387–396, 1995.Google Scholar
  15. 15.
    J.W. Digby, C.E. McIntosh, G.M. Parkhurst, and S.R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies” IEEE Transactions of Microwave Theory and Techniques, vol. 48, no. 8, pp. 1293–1302, 2000.CrossRefGoogle Scholar
  16. 16.
    J.P. Becker, J.R. East, and L.P.B. Katehi, “Performance of silicon micromachined waveguide at W-band” Electronics Letters, vol. 38, no. 13, 2002.Google Scholar
  17. 17.
    X.-J. Shen, Li-Wei Pan, and Liwei Lin, “Microplastic embossing process: experimental and theoretical characterizations” Sensors and Actuators A, vol. 97–98, pp. 428–433, 2002.CrossRefGoogle Scholar
  18. 18.
    L. Liwei, Y.T. Cheng, and C.-J. Chiu, “Comparative study of hot embossed microstructures fabricated by laboratory and commercial environments” Microsystem Technology of Journal, vol. 4, no. 3, pp. 113–116, 1998.CrossRefGoogle Scholar
  19. 19.
    F. Sammoura, Y. C. Su, Y. Cai, C. Y. Chi, B. Elamaran, Liwei Lin, and J.-C. Chiao, “Microfabricated plastic 95-GHz rectangular waveguide,” Proceedings of 18th IEEE Micro Electro Mechanical Systems Conference, Miami, Florida, pp. 167-170, January 30–February 3 2005.Google Scholar
  20. 20.
    Firas Sammoura, Yu-Chuan Su, Ying Cai, Chen-Yu Chi, Bala Elamaran, Liwei Lin, and Jung-Chih Chiao, “Plastic 95-GHz rectangular waveguides by micro molding technologies,” Sensors and Actautors – A: Physical, vol. 127, pp. 270–275, 2006.CrossRefGoogle Scholar
  21. 21.
    J. R. Ried, E. D. March, and R. T. Webster, “Micromachined rectangular-coaxial transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 3433–3442, 2006.CrossRefGoogle Scholar
  22. 22.
    R. T. Chen, E. R. Brown, and C. A. Bang, “A compact low-loss Ka-band filter using 3-dimensional micromachined integrated coax,” 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, pp. 801–804, 2004.Google Scholar
  23. 23.
    N. Asao, N. Yoneda, M. Mukuda, K. Yamasaki, O. Kamohara, Y. Yoshino, and K. Henmi, “Metal-plated plastic waveguide filter using injection molding process,” 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, pp. 941–944, 2003.Google Scholar
  24. 24.
    C. Y. Chi and G. Rebeiz, “A low-loss 20 GHz micromachined bandpass filter,” IEEE MTT-S International Microwave Symposium Digest, New York, NY, vol. 3, pp. 1531–1534, 1995.Google Scholar
  25. 25.
    S. V. Robertson, L. O. B. Katehi, and G. M. Rebeiz, “Micromachined self-packaged W-band bandpass filters,” IEEE MTT-S International Microwave Symposium Digest, New York, NY, vol. 3, pp. 1543–1546, 1995.Google Scholar
  26. 26.
    K. Jiang, M. J. Lancaster, I. Llamas-Garro, and P. Jin, “SU-8 Ka-band filter and its microfabrication,” Journal of Micromechanics and Microengineering, vol. 15, pp. 1522–1526, 2005.CrossRefGoogle Scholar
  27. 27.
    B. T. Lee, M. S. Kwon, J. B. Yoon, and S. Y. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using a rubber molding process,” IEEE Photonics Technology Letters, vol. 12, no. 1, January 2000.Google Scholar
  28. 28.
    F. Sammoura, Y. Cai, C. Y. Chi, T. Hirano, L. W. Lin, and J. C. Chiao, “A micromachined W-band iris filter,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, pp. 1067–1070, June 5–9, 2005.Google Scholar
  29. 29.
    F. Sammoura, Y.K. Fuh, and L. Lin, “Micromachined polymeric W-band bandpass filters,” Sensors and Actautors – A: Physical, vol. 147, pp. 47–51, 2008.CrossRefGoogle Scholar
  30. 30.
    I. C. Hunter and J. D. Rhodes, “Electronically tunable microwave bandpass filters,” IEEE Transactions on Microwave Theory and Techniques, vol. MMT-30, no. 9, pp. 1354–1360, September 1982.CrossRefGoogle Scholar
  31. 31.
    Y. Liu, A. Borgioli, A. S. Nagra, and R. A. York, “Distributed MEMS transmission lines for tunable filter applications,” International Journal of RF and Microwave Compueter-Aided Engineering, vol. 11, no. 5, pp. 254–260, September 2001.CrossRefGoogle Scholar
  32. 32.
    K. Entesari and G. Rebeiz, “A 12-18-GHz three-pole RF MEMS tunable Filter,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 8, pp. 2566–2571, August 2005.CrossRefGoogle Scholar
  33. 33.
    K. Entesari and G. Rebeiz, “A differential 4-bit 6.5–10-GHz RF MEMS tunable filter,” IEEE Transactions of Microwave Theory and Techniques, vol. 53, no. 3, pp. 1103–1110, March 2005.CrossRefGoogle Scholar
  34. 34.
    S. Lee, J. M. Kim, Y. K. Kim, and Y. Kwon, “Millimeter-wave MEMS tunable low pass filter with reconfigurable series inductors and capacitive switches,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 10, pp. 691–693, October 2005.Google Scholar
  35. 35.
    S. Robertson, L. Katehi, and G. Rebeiz, “Micromachined self-packaged W-band bandpass filters,” 1995 IEEE MTT-S International Microwave Symposium Digest, New York, NY, Vol. 3, pp.1543–1546, 1995.Google Scholar
  36. 36.
    J. Uher, J. Bornemann, and F. Arndt, “Magnetically tunable rectangular waveguide E-plane integrated circuit filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 6, pp. 1014–1022, June 1988.CrossRefGoogle Scholar
  37. 37.
    G. Rebeiz, G. L. Tan, and J. S. Hayden, “RF MEMS phase shifters,” IEEE microwave magazine, pp. 72–81, June 2002.Google Scholar
  38. 38.
    X. Zuo, H. How, P. Shi, S. A. Oliver, and C. Vittoria, “Development of high frequency ferrite phase-shifter,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2395–2397, July 2001.CrossRefGoogle Scholar
  39. 39.
    X. Shan, Z. Shen, and P. T. Teo, “Mode-matching analysis of H-plane ferrite-loaded rectangular waveguide discontinuities,” International Journal of RF & Microwave Computer-Aided Engineering, vol. 13, no. 4, pp. 259–268, July 2003.CrossRefGoogle Scholar
  40. 40.
    B. Glance, “A fast low-loss low-drive 12-GHz microstrip p-i-n phase shifter,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, no. 6, pp. 699–671, June 1980.Google Scholar
  41. 41.
    J. Hung, L. Dussopt, and G. M. Rebeiz, “A low-loss distributed 2-bit W-band MEMS phase shifter,” 33rd European Microwave Conference, Munich, Vol.3, pp. 983–985, 2003.Google Scholar
  42. 42.
    B. Lakshminarayanan, and T. Weller, “Electronically tunable multi-line TRL using an impedance matched multi-bit MEMS phase shifters,” IEEE Microwave and Wireless Compoenents Letters, vol. 15, no. 2, pp. 137–139, February 2005.CrossRefGoogle Scholar
  43. 43.
    F. Sammoura and Liwei Lin, “A plastic W-band MEMS phase shifter,” The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, pp. 647–650, June 10–14, 2007.Google Scholar
  44. 44.
    F. Sammoura and Liwei Lin, “A plastic W-band MEMS phase shifter,” IEEE International Microwave Symposium, IMS, pp. 136–139, San Francisco, June, 2006.Google Scholar
  45. 45.
    F. Sammoura and Liwei Lin, “Waveguide based MEMS tunable filters and phase shifters,” USPTO Patent Application 20070287634, 2007Google Scholar
  46. 46.
    David M. Pozar, Microwave Engineering, (New York: John Wiley & Sons, 1997).Google Scholar
  47. 47.
    B. A. Shenouda, L. W. Pearson, and J. E. Harriss, “Etched-silicon micromachined-band waveguides and horn antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp. 724–727, 2001.CrossRefGoogle Scholar
  48. 48.
    G.M. Rebeiz, D.P. Kasilingam, Y. Guo, P.A. Stimson, and D.B. Tutledge, “Monolithic millimeter-wave two-dimensional horn imaging array,” IEEE Transactions on Antennas and Propagation, vol. 38, pp. 1473–1482, 1990.CrossRefGoogle Scholar
  49. 49.
    J.L. Hesler, et al., “Analysis of an octagonal micromachined horn antenna for submillimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 49, pp. 997–1001, 2001.CrossRefGoogle Scholar
  50. 50.
    LIGA – Lithographie, Gavanoformung, Abformung in German for Lithography, Electroplating and Molding in English. A process developed in Germany to fabricate high-aspect-ratio micro structure.Google Scholar
  51. 51.
    S.G. Gearhard and T. Willke, “Integrated antennas and filters fabricated using micromachining techniques,” IEEE Aerospace Applications Conference Proceedings, vol. 3, pp. 249–254, 1998.Google Scholar
  52. 52.
    E. R. Brown, A. L. Cohen, C. A. Bang, M. S. Lockard, B. W. Byrne, N. M. Vandelli, D. S. McPherson, and G. Zhang, “Characteristics of microfabricated rectangular coax in the Ka band,” Microwave and Optical Technology Letters, vol. 40, pp. 365–368, 2004.CrossRefGoogle Scholar
  53. 53.
    Y. Benigual, A. Berthon, C.V. Klooster, and L. Costes, “Design realization and measurements of a high performance wide-band corrugated horn,” IEEE Transactions on Antennas and Propagation, vol. 53, pp. 3540–3546, 2005.CrossRefGoogle Scholar
  54. 54.
    S. Kuo, A. Roberts, J. Ingram, and I. Eglitis, “A compact, circularly polarized horn antenna”, AIAA-2004-3265, 2004Google Scholar
  55. 55.
    F. Sammoura and L. Lin, “A plastic waveguide-fed horn antenna,” WIPO Patent Application, WO/2008/073605, 2008.Google Scholar
  56. 56.
    F. Sammoura, Y.K. Fuh, and L. Lin, “Micromachined 95 GHz waveguide-fed polymeric horn antenna,” Journal of Micromechanics and Microengineering, vol. 18, 055009, 2008.Google Scholar
  57. 57.
    Constantine A. Balanis, Antenna Theory: Analysis and Design, (New York: John Wiley, 1997), pp. 651–721.Google Scholar
  58. 58.
    Y. T. Lo and S. W. Lee, Antenna Handbook: Theory, Applications, and Design, (New York: Van Nostrand Reinhold, 1988).Google Scholar
  59. 59.
    Firas Sammoura, Micromachined polymer millimeter-wave radar components, Doctoral dissertation, University of California Berkeley,  Chapter 2, 2006.
  60. 60.
    Frederick J. Tischer, “Experimental attenuation of rectangular waveguides at millimeter wavelengths”, IEEE Transactions on Microwave Theory and Techniques, vol. 27, pp. 31–37, 1979.CrossRefGoogle Scholar
  61. 61.
    W. Ruythooren et al., “Electrodeposition for the synthesis of mocrosystems”, Journal of Micromechanics and Microengineering, vol. 108, pp. 101–107, 2000.CrossRefGoogle Scholar
  62. 62.
    COMSOL multiphysics simulation software, version 3.2a.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yiin-Kuen Fuh
    • 1
  • Firas Sammoura
    • 1
  • Yingqi Jiang
    • 1
  • Liwei Lin
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations