The Use and Abuse of Antibiotics and the Development of Antibiotic Resistance

  • B. Keith English
  • Aditya H. Gaur
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 659)


The growing problem of antibiotic resistance has made the formerly routine therapy of many infectious diseases challenging, and, in rare cases, impossible. The widespread nature of the problem has led some experts to speculate about a “post-antibiotic era.” Furthermore, though antibiotic resistance occurs in nature and is an inevitable consequence of even the most prudent antibiotic use, it is clear that our overuse and misuse of antibiotics is responsible for most of the recent increases in antibiotic resistance (McGowan, 1983; Austin et al., 1999; Arnold and Straus, 2005). Judicious and rational antibiotic use has the potential to limit the emergence of clinically important antibiotic resistance and may be able to reduce the impact of resistance that has already developed, effectively prolonging the shelf life of today’s (and tomorrow’s) antibiotics (Dowell et al., 1988). Nonetheless, the threat posed by antibiotic-resistant pathogens has been a wakeup call for modern medicine – developing new antibiotics is important but strategies to prevent infectious diseases (by immunization or other public health measures) will always be preferable when feasible.


Antibiotic Resistance Antimicrobial Resistance Antibiotic Exposure Pneumococcal Carriage Resistant Pneumococcus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam, D. (2002). Global antibiotic resistance in Streptococcus pneumoniae. J Antimicrob Chemother 50(Suppl), 1–5.PubMedGoogle Scholar
  2. Arnold, S.R. & Straus, S.E. (2005). Interventions to improve antibiotic prescribing practices in ambulatory care. Cochrane Database Syst Rev (19), CD003539 1–65.Google Scholar
  3. Arnold, S.R. et al. (2005). Antibiotic prescribing for upper respiratory tract infection: the importance of diagnostic uncertainty. J Pediatr (146), 222–226.PubMedCrossRefGoogle Scholar
  4. Austin, D.J., Kristinsson, K.G., & Anderson, R.M. (1999). The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci USA (96), 1152–1156.Google Scholar
  5. Bauchner, H., Pelton, S.I., & Klein J.O. (1999). Parents, physicians, and antibiotic use. Pediatrics (103), 395–401.PubMedCrossRefGoogle Scholar
  6. Barrett, F.F., McGehee, R.F., Jr., & Finland, M. (1968). Methicillin-resistant Staphylococcus aureus at Boston City Hospital. Bacteriologic and epidemiologic observations. N Engl J Med (279), 441–448.PubMedCrossRefGoogle Scholar
  7. Belongia, E.A., Sullivan, B.J., Chyou, P-H., Madagame, E., Reed, K.D., & Schwartz, B. (2001). A community intervention trial to promote judicious antibiotic use and reduce penicillin-resistant Streptococcus pneumoniae carriage in children. Pediatrics (108), 575–583.PubMedCrossRefGoogle Scholar
  8. Bradley, J.S. & Connor, J.D. (1991). Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to beta-lactam antibiotics. Pediatr Infect Dis J, (10), 871–873.PubMedCrossRefGoogle Scholar
  9. Davis, C.E. & Anandan, J. (1970). The evolution of r factor: a study of a preantibiotic community in Borneo. N Engl J Med (282), 117–122.Dowell S.F., Marcy S.M., Phillips, W.R., Gerber M.A., & Schwartz, B (1998). Principles of judicious use of antimicrobial agents for pediatric upper respiratory tract infections. Pediatrics 163–165.PubMedCrossRefGoogle Scholar
  10. English, B.K. & Buckingham, S.C. (2006). Impact of antimicrobial resistance on therapy of bacterial pneumonia in children. Adv Exp Med Biol (582), 125–135.PubMedCrossRefGoogle Scholar
  11. English, B.K. & Shenep, J.L. (2009). Enterococcal and viridans streptococcal infections. In: R.D. Feigin, J.D. Cherry, G. Demmler & S.L. Kaplan (Eds.) Textbook of Pediatric Infectious Diseases (6th Ed.). Philadelphia: Saunders pp. 1258–1288.Google Scholar
  12. Feikin, D.R., Schuchat, A., Kolczak, M., Barrett, N.L., Harrison, L.H., Lefkowitz, L., McGeer, A. et al. (2000). Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995–1997. Am J Public Health (90), 223–229.PubMedCrossRefGoogle Scholar
  13. Fey, P.D., Safranek, T.J., Rupp, M.E., Dunne, E.F., Ribot, E., Iwen, P.C., Bradford, P.A, Angulo, F.J. et al. (2000). Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N Engl J Med (342), 1242–1249.PubMedCrossRefGoogle Scholar
  14. Gardner, P., Smith, D.H., Beer, H., & Moellering, R. (1969). Recovery of resistance (R) factors from a drug-free community. Lancet 2(7624), 774–776.PubMedCrossRefGoogle Scholar
  15. Gardner, P., Smith, D.H., Beer, H., & Moellering R.C. Jr. (1970). Recovery of resistance factors from a drug-free community. Lancet 1(7641), 301.PubMedGoogle Scholar
  16. Gaur, A.H., & English, B.K. (2006). The judicious use of antibiotics – an investment towards optimized health care. Indian J Pediatr (73), 343–350.PubMedCrossRefGoogle Scholar
  17. Gerner-Smidt, P., & Whichard, J.M. (2008). Foodborne disease trends and reports. Foodborne Pathog Dis (5), 551–554.PubMedCrossRefGoogle Scholar
  18. Gilliver, M.A., Bennett, M., Begon, M., Hazel, S.M., & Hart, C.A. (1999). Antibiotic resistance in wild rodents. Nature (401), 233–234.PubMedCrossRefGoogle Scholar
  19. Gorbach, S.L. (2001). Antimicrobial use in animal feed – time to stop. N Engl J Med (345), 1202–1203.PubMedCrossRefGoogle Scholar
  20. Guillemot, D., Varon, E., Bernede, C., Weber, P., Henriet, L., Simon, S., Laurent, C. et al. (2005). Reduction of antibiotic use in the community reduces the rate of colonization with penicillin G-nonsusceptible Streptococcus pneumoniae. Clin Infect Dis (41), 930–938.PubMedCrossRefGoogle Scholar
  21. Hare, M.E., Gaur, A.H., Somes, G.W., Arnold, S.R., & Shorr, R.I. (2006). Does it really take longer not to prescribe antibiotics for viral respiratory tract infections in children? Ambul Pediatr (6), 152–156.PubMedCrossRefGoogle Scholar
  22. Herold, B.C., Immergluck, L.C., Maranan, M.C., Lauderdale, D.S., Gaskin, R.E., Boyle-Vavra, S., Leitch, C.D. et al. (1998). Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA (279), 593–598.PubMedCrossRefGoogle Scholar
  23. Hunt, C., Dionne, M., Delorme, M. et al. (1999). Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus: Minnesota and North Dakota, 1997–1999. MMWR (48), 707–710.Google Scholar
  24. Hunter, T.H. (1947). Use of streptomycin in treatment of bacterial endocarditis. Am J Med, (2), 436–442.PubMedCrossRefGoogle Scholar
  25. Kaplan, S.L. (2006). Community-acquired methicillin-resistant Staphylococcus aureus infections in children. Semin Pediatr Infect Dis (17), 113–119.Klugman, K.P. (2002). The successful clone: the vector of dissemination of resistance in Streptococcus pneumoniae. J Antimicrob Chemother 50 (S2): 1–5.PubMedCrossRefGoogle Scholar
  26. Lowy, FD. (1998). Medical progress: Staphylococcus aureus infections. N Engl J Med (339), 520–532.PubMedCrossRefGoogle Scholar
  27. Mangione-Smith, R., McGlynn, E.A., Elliott, M.N., Krogstad, P., & Brook, R.H. (1999). The relationship between perceived parental expectations and pediatrician antimicrobial prescribing behavior. Pediatrics (103), 711–718.PubMedCrossRefGoogle Scholar
  28. Martin, MA. (1994). Methicillin-resistant Staphylococcus aureus: the persistent resistant nosocomial pathogen. Curr Clin Top Infect Dis (14), 170–191.PubMedGoogle Scholar
  29. McCaig, L.F., & Hughes, JM. (1995). Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA (274), 214–219.CrossRefGoogle Scholar
  30. McCracken, G.H., Jr. (1995). Emergence of resistant Streptococcus pneumoniae: a problem in pediatrics. Pediatr Infect Dis J (14), 424–428.PubMedCrossRefGoogle Scholar
  31. McDonald L.C., Rossiter S, Mackinson C., Wang Y.Y., Johnson S., Sullivan M., Sokolow R. et al. (2001). Quinupristin-dalfopristin-resistant Enterococcus faecium on chicken and in human stool specimens. N Engl J Med (345), 1155–1160.PubMedCrossRefGoogle Scholar
  32. McGowan, J.E. Jr. (1983). Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev Infect Dis (5), 286–291.CrossRefGoogle Scholar
  33. Moberg, C.L. (1996). Rene Dubos: a harbinger of microbial resistance to antibiotics. Microb Drug Resist (2), 287–297.PubMedCrossRefGoogle Scholar
  34. Moellering, R.C., Jr., Wennersten, C., & Medrek, T. (1970). Prevalence of high-level resistance to aminoglycosides in clinical isolates of enterococci. Antimicrob Agents Chemother (1), 335–340.Google Scholar
  35. Moellering, R.C., Jr. (1992). Emergence of Enterococcus as a significant pathogen. Clin Infect Dis (14), 1173–1176.PubMedGoogle Scholar
  36. Moran, G.J., Krishnadasan A., Gorwitz R.J., Fosheim G.E., McDougal L.K., Carey R.B., Talan D.A. (2006). EMERGEncy ID Net Study Group. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med (355), 666–674.PubMedCrossRefGoogle Scholar
  37. Murray, B.E. (1990). The life and times of the enterococcus. Clin Microbiol Rev (3), 46–65.PubMedGoogle Scholar
  38. Murray, B.E. (2000). Vancomycin-resistant enterococcal infections. N Engl J Med (342), 710–721.PubMedCrossRefGoogle Scholar
  39. Osterblad, M., Norrdahl, K., Korpimaki, E., & Huovinen, P. (2001). How wild are wild mammals? Nature (409), 37–38.PubMedCrossRefGoogle Scholar
  40. Pichichero, M.E. (1999). Understanding antibiotic overuse for respiratory tract infections in children. Pediatrics (104), 1384–1388.PubMedCrossRefGoogle Scholar
  41. Polk, R. (1999). Optimal use of modern antibiotics: emerging trends. Clin Infect Dis (29), 264–274.PubMedCrossRefGoogle Scholar
  42. Samore, M.H., Lipsitch, M., Alder, S.C., Haddadin, B., Stoddard, G., Williamson, J., Sebastian, K. et al. (2005). Mechanisms by which antibiotics promote dissemination of resistant pneumococci in human populations. Amer J Epidem (163), 160–170.CrossRefGoogle Scholar
  43. Schaberg, D.R., Culver, D.H., & Gaynes, R.P. (1991). Major trends in the microbial etiology of nosocomial infection. Am J Med 91(Suppl 3B), 72–75.CrossRefGoogle Scholar
  44. Schrag, S.J., McGee, L., Whitney, C.G., Beall, B., Craig, A.S., Choate, M.E., Jorgensen, J.H. et al. (2004). Active Bacterial Core Surveillance Team. 2004. Emergence of Streptococcus pneumoniae with very-high-level resistance to penicillin. Antimicrob Agents Chemother (48), 3016–3022.PubMedCrossRefGoogle Scholar
  45. Schwartz, B., Bell, D.M., & Hughes, J.M. (1997). Preventing the emergence of antimicrobial resistance. A call for action by clinicians, public health officials, and patients. JAMA (278), 944–945.PubMedCrossRefGoogle Scholar
  46. Schwartz, B. (1999). Preventing the spread of antimicrobial resistance among bacterial respiratory pathogens in industrialized countries: the case for judicious antimicrobial use. Clin Infect Dis (28), 211–213.PubMedCrossRefGoogle Scholar
  47. Seppala, H., Klaukka, T., Vuopio-Varkila, J., Muotiala, A, Helenius, H., Lager, K., & Huovinen, P. (1997). The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N Engl J Med (337), 441–446.PubMedCrossRefGoogle Scholar
  48. Shorr, A.F. (2007). Epidemiology of staphylococcal resistance. Clin Infect Dis (45), S171–S176.PubMedCrossRefGoogle Scholar
  49. Sloas, M.M., Barrett, F.F., Chesney, P.J., English, B.K., Hill, B.C., Tenover, F.C., & Leggiadro, R.J. (1992) Cephalosporin treatment failure in penicillin- and cephalosporin-resistant Streptococcus pneumoniae meningitis. Pediatr Infect Dis J (11), 662–666.PubMedGoogle Scholar
  50. Tomasz, A. (1994). Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. N Engl J Med (330), 1247–12451.Google Scholar
  51. Van Epps, HL. (2006). Rene Dubos – unearthing antibiotics. J Exp Med (203), 259.PubMedCrossRefGoogle Scholar
  52. White, D.G., Zhao, S., Sudler, R., Ayers, S., Friedman, S., Chen, S. et al. (2001). The isolation of antibiotic-resistant salmonella from retail ground meats. N Engl J Med (345), 1147–1154.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The University of Tennessee Health Science CenterMemphisUSA
  2. 2.Department of Infectious DiseasesSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations