PathFinding and TechTuning

  • Dragomir Milojevic
  • Ravi Varadarajan
  • Dirk Seynhaeve
  • Pol Marchal


This chapter discusses various implications of the 3D integration technology on the design methodologies, flows, and associated tools. The experiences from the advanced 2D technologies are extrapolated and combined with the incremental challenges posed by the 3D technologies, and the requirements for design ecosystem for 3D technologies are precipitated. The chapter is organized in five sections. In the first section, we define the overall requirements for the 3D design ecosystem, and we identify the need for two incremental design methodologies, in addition to the traditional design authoring flow. The second section describes one of the incremental design methodologies – named PathFinding, and the third section discusses the other methodology – named TechTuning. In section four we present practical application of the proposed design methodology and associated tool chain. Section 5 gives a brief summary and few concluding remarks.


Design Flow Tool Chain Physical Prototype Data Path Width Value Change Dump 



The authors would like to thank Riko Radojcic for his visionary contributions to PathFinding and TechTuning. They would also like to express their gratitude to Srinivasan Murali and Federico Angiolini from iNoCs for their valuable help to make the vision become true.


  1. 1.
    Al-Sarawi S, Abbott D, Franzon P (1998) A review of 3-D packaging technology, ­components, packaging, and manufacturing technology, part B: advanced packaging. IEEE Trans Compon Packag Manuf Tech 21(1):2–14CrossRefGoogle Scholar
  2. 2.
    Swinnen B, Jourdain A, De Moor P, Beyne E (2008) Wafer level 3-D ICs process technology, Tan S, Gutmann RJ, Reif LR (Eds), Springer, ISBN 978-0-387-76532-7Google Scholar
  3. 3.
    Das S, Fan A, Chen K et al (2004) Technology, performance, and computer-aided design of three-dimensional integrated circuits. In: ISPD’04 proceedings of the 2004 international ­symposium on Physical design. ACM, New York, pp 108–115CrossRefGoogle Scholar
  4. 4.
    Gupta S, Hilbert M, Hong S et al (2004) Techniques for producing 3D ICs with high-density interconnect. In: 21st international VLSI multilevel interconnection conference, Waikoloa BeachGoogle Scholar
  5. 5.
    Beyne E, Swinnen B (2007) 3D system integration technologies, integrated circuit design and technology. In: IEEE International Conference on Integrated Circuit Design and Technology, 2007 (ICICDT ’07), pp 1–3Google Scholar
  6. 6.
    Martin G, Smith G (2009) High-level synthesis: past, present, and future. IEEE Des Test Comput July/August:18–25Google Scholar
  7. 7.
    Aditya S, Kathail V (2008) Algorithmic synthesis using PICO.In: Coussy P, Morawiec A (eds). High-level synthesis: from algorithm to digital circuit. Springer, New YorkGoogle Scholar
  8. 8.
    Bollaert T (2008) Catapult synthesis: a practical introduction to iterative C synthesis. In: Coussy P, Morawiec A (eds). High-level synthesis: from algorithm to digital circuit. Springer, New YorkGoogle Scholar
  9. 9.
    Deng Y, Maly W (2004) 2.5D system integration: a design driven system implementation schema. In: Proceedings of ASPDAC, pp 450–455Google Scholar
  10. 10.
    Goplen B, Sapatnekar S (2005) Placement of thermal vias in 3-d ICs using various thermal objectives. IEEE Trans Comput Aided Des Integrated Circ Syst 25(4):692–709CrossRefGoogle Scholar
  11. 11.
    Li Z, Hong X, Zhou Q et al. (2006) Efficient thermal via planning approach and its implications on 3-d floorplanning, IEEE Trans Comput Aided Des Integrated Circ Syst 26:645–658CrossRefGoogle Scholar
  12. 12.
    Cong J, Wei J, Zhang Y (2004) A thermal driven floorplanning algorithm for 3D ICs. In: Proceedings of the international conference on computer aided design, pp 306–313Google Scholar
  13. 13.
    Cong J et al. (2005) Thermal driven multi-level routing for 3-D ICs. In: Proceedings of Asia Pacific DAC 2005, pp 121–126Google Scholar
  14. 14.
    Chun C, Corleto J, Nowak M, Radojcic R (2208) Virtual design for technology exploration – a process design integration methodology for a fabless entity. In: International conference on integrated circuit design and technology, pp 125–130Google Scholar
  15. 15.
    Nowak M, Corleto J, Chun C, Radojcic R (2008) Holistic pathfinding: virtual wireless chip design for advanced technology and design exploration. In: DAC ’08: Proceedings of the 45th annual conference on design automation. ACM, New York, pp 593–593CrossRefGoogle Scholar
  16. 16.
    Mei B, Sutter B, Aa T et al (2008) Implementation of a coarse-grained reconfigurable media processor for AVC decoder. J Signal Process Syst 51(3):225–243CrossRefGoogle Scholar
  17. 17.
    AutoESL, AutoESL Design Technologies, Inc. 20245 Stevens Creek Blvd., Suite 200, Cupertino, CA 95014,
  18. 18.
    Wolkotte PT, Smit GJM, Kavaldjiev NK, Becker JE, Becker J (2005) Energy model of networks-on-chip and a bus. In: Nurmi J, Takala J, Hamalainen TD (eds). In: Proceedings of the international symposium on system-on- chip (SoC 2005), Tampere, Finland. IEEE, Piscataway, pp 82–85CrossRefGoogle Scholar
  19. 19.
    Goossens K, Dielissen J, Radulescu A (2005) The Æthereal network on chip: concepts, architectures, and implementations. IEEE Des Test Comput 22(September-October):21–31CrossRefGoogle Scholar
  20. 20.
    Bertozzi D, Benini L (2004) Xpipes: a network-on-chip architecture for gigascale systems-on-chip. IEEE Circ Syst Mag 4:18–31CrossRefGoogle Scholar
  21. 21.
    Sonics inc. 890 N. McCarthy Blvd, 2nd Floor, Milpitas, CA 95035, USA. http://www.s­
  22. 22.
    Arteris SA, 6 Parc Ariane – Immeuble Mercure, Boulevard des Chenes, 78284 Guyancourt Cedex, France.
  23. 23.
    iNoCs, Route de Chavannes, 27D, 1007 Lausanne VD, Switzerland.
  24. 24.
    Atrenta, 2077 Gateway Place, Ste 300, San Jose, California 95110, USA.
  25. 25.
    Torregiani C, Oprins H, Vandevelde B, Beyne E, De Wolf I (2009) Thermal analysis of hot spots in advanced 3D-stacked structures. In: 15th International workshop on thermal investigations of ICs and systems – THERMINIC 2009, Leuven, Belgium, 7–9 October 2009Google Scholar
  26. 26.
    Torregiani C, Oprins H, Vandevelde B, Beyne E, De Wolf I (2009) Compact thermal modeling of hot spots in advanced 3D-stacked structures. In: 11th Electronics packaging technology conference – EPTC 2009, Singapore, 9–11 December 2009Google Scholar
  27. 27.
    Oprins H, Cupak M, Van der Plas G, Vandevelde B, Marchal P, Srinivasan A, Cheng E (2009) Fine grain thermal modeling of 3D stacked structures. In 15th International workshop on thermal inverstigations of ICs and systems – THERMINIC 2009, Leuven, Belgium, 7–9 October 2009, pp 45–49Google Scholar
  28. 28.
    Milojevic D, Montperrus L, Verkest D (2008) Power dissipation of the network-on-chip in multi-processor system-on-chip dedicated for video coding applications. J Signal Process Syst, 15.Google Scholar
  29. 29.
    Lee DU, Lee HW, Kwean KC, et al (2006) A 2.5Gb/s/pin 256Mb GDDR3 SDRAM with series pipelined CAS latency control and dual-loop digital DLL. In Solid-state circuits, 2006 IEEE international conference digest of technical papers, pp 547–556Google Scholar
  30. 30.
    Pak JS, Ryu C, Kim J, et al (2008) Wideband low power distribution network impedance of high chip density package using 3-D stacked through silicon vias. In: APEMC 2008, Asia-Pacific symposium on electromagnetic compatibility and 19th international Zurich symposium on electromagnetic compatibility, 2008, pp 351–354Google Scholar
  31. 31.
    Kumagai K, Yang C, Izumino et al (2006) System-in-silicon architecture and its application to H.264/AVC motion estimation for 1080HDTV, Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, pp 1706–1715Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dragomir Milojevic
    • 1
  • Ravi Varadarajan
  • Dirk Seynhaeve
  • Pol Marchal
  1. 1.Université Libre de Bruxelles, BEAMSBrusselsBelgium

Personalised recommendations