Advertisement

Smart Cameras pp 267-280 | Cite as

Stereo Vision in a Network of Co-operative Cameras

  • Sanjeev Kumar
  • Christian Micheloni
  • Gian Luca Foresti
Chapter

Abstract

In this chapter, a smart framework is presented for the object localization on a given ground-plane test map using heterogeneous stereo vision. In particular, the image pairs are captured by using static and Pan Tilt Zoom (PTZ)cameras, which are heterogeneous in terms of imaging parameters thus having different focal lengths, image resolutions, intensities, etc. These two cameras are selected in a co-operative manner from a network of static and PTZ cameras and used as a stereo system to localize an object even in the case when it is partially occluded. The various sequences of images captured by these cameras are made homogeneous based on their focal ratio and then by performing zero padding. The pairs of matching points are obtained using scale invariant features (SIFT) matching from stereo images. The rectification transformations are calculated by solving a constrained nonlinear optimization problem. The 3-D position of the object is estimated based on a modified concept of stereo matching in rectified pairs of images. Localization is made using the 3-D position obtained from stereo. Experiments are performed to evaluate the performance of the proposed framework using real sequences of images. The proposed method is useful in stereoscopic as well as in video surveillance applications.

Keywords

Stereo Image Stereo Vision Stereo Match Epipolar Line Static Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This publication was partially supported by the Italian Ministry of University and Scientific Research within the framework of the project entitled “Ambient Intelligence: event analysis, sensor reconfiguration and multimodal interfaces.” Sanjeev Kumar also extends his gratitude to the Department of Mathematics and Computer Science, University of Udine, for the financial support provided for this publication under the grant MIUR n. 179 dd. 29/01/2007 provided by Italian Ministry of University and Scientific Research.

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Sanjeev Kumar
    • 1
  • Christian Micheloni
    • 1
  • Gian Luca Foresti
    • 1
  1. 1.Department of Mathematics and Computer Science (DIMI)University of UdineUdineItaly

Personalised recommendations